Fluorescent compounds make tumors glow

Apr 29, 2010
Mice bearing the mutation that causes familial adenomatous polyposis in human beings (Min mice) develop small intestinal tumors that express COX-2. Fluorocoxib injection into Min mice lights up an intestinal polyp. Credit: Lawrence Marnett, Ph.D., and colleagues

A series of novel imaging agents could light up tumors as they begin to form - before they turn deadly - and signal their transition to aggressive cancers.

The compounds - fluorescent inhibitors of the enzyme cyclooxygenase-2 (COX-2) - could have broad applications for detecting tumors earlier, monitoring a tumor's transition from pre-malignancy to more aggressive growth, and defining margins during surgical removal.

"We're very excited about these new agents and are moving forward to develop them for human clinical trials," said Lawrence Marnett, Ph.D., the leader of the Vanderbilt University team that developed the compounds, which are described in the May 1 issue of Cancer Research.

COX-2 is an attractive target for . It's not found in most normal tissues, and then it is "turned on" in inflammatory lesions and tumors, Marnett explained.

"COX-2 is expressed at the earliest stages of pre-malignancy - in pre-malignant lesions, but not in surrounding normal tissue - and as a tumor grows and becomes increasingly malignant, COX-2 levels go up," Marnett said.

Compounds that bind selectively to COX-2 - and carry a fluorescent marker - should act as "beacons" for tumor cells and for inflammation.

Marnett and his colleagues previously demonstrated that fluorescent COX-2 inhibitors - which they have now dubbed "fluorocoxibs" - were useful probes for , but their early molecules were not appropriate for cellular or in vivo imaging.

"It was a real challenge to make a compound that is COX-2 selective (doesn't bind to the related COX-1 ), has desirable fluorescence properties, and gets to the tissue in vivo," Marnett said.

To develop such compounds, Jashim Uddin, Ph.D., research assistant professor of Biochemistry, started with the "core" of the anti-inflammatory medicines and celecoxib. He then tethered various fluorescent parts to the core structure, ultimately synthesizing more than 200 compounds. The group tested each compound for its interaction with purified COX-2 and COX-1 proteins and then assessed promising compounds for COX-2 selectivity and fluorescence in cultured cells and in animals. Two compounds made the cut.

In studies led by senior research specialist Brenda Crews, the investigators evaluated the potential of these compounds for in vivo imaging using three different animal models: irritant-induced in the mouse foot pad; human tumors grafted into mice; and spontaneous tumors in mice.

In each case, the two fluorocoxibs - injected intravenously or into the abdominal cavity - accumulated in the inflamed or tumor tissue, giving it a fluorescent "glow."

To move the agents toward human clinical trials, the team will conduct additional toxicology and pharmacology testing and develop the tools for particular settings that are amenable to fluorescence imaging, such as skin or sites accessible by endoscope (e.g., esophagus and colon).

In the esophagus, for example, a pre-malignant lesion called Barrett's esophagus can transition to a low-grade dysplasia, then to a high-grade dysplasia, and finally to malignant cancer, which has a one-year survival of only 10 percent. For a patient with Barrett's esophagus, detecting the transition to dysplasia is critical. The problem is that dysplasia is not visibly different from the pre-malignant Barrett's lesion, so physicians collect random biopsy samples - which might miss areas of dysplasia.

"If instead, the physician could look through the endoscope and see a nest of cells lighting up with these fluorocoxibs - that is where they could biopsy," Marnett said.

"Because COX-2 levels increase during cancer progression in virtually all solid tumors, we think these imaging tools will have many, many different applications."

The investigators also are exploring using the compounds to target delivery of chemotherapeutic drugs directly to COX-2-expressing cells - by tethering an anti-cancer drug instead of a fluorescent marker to the COX-2 inhibitor core.

Explore further: Chronic inflammation linked to 'high-grade' prostate cancer

Related Stories

COX-2 inhibitors delay pancreatic cancer precursors in mice

Aug 01, 2007

Nimesulide, a cyclooxygenase-2 (COX-2) inhibitor, delays the progression of precancerous pancreatic lesions in mice, according to researchers at David Geffen School of Medicine at UCLA. While inflammation has been shown to ...

Study: Celecoxib can cause arrhythmias

Jan 15, 2008

U.S. medical researchers have determined the anti-inflammatory drug celecoxib (Celebrex) can adversely affect heart rhythm in fruit fly and rat models.

Recommended for you

Unraveling the 'black ribbon' around lung cancer

17 hours ago

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?

User comments : 0

More news stories

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...