Alzheimer's memory problems originate with protein clumps floating in the brain, not amyloid plaques

Apr 27, 2010

Using a new mouse model of Alzheimer's disease, researchers at Mount Sinai School of Medicine have found that Alzheimer's pathology originates in Amyloid-Beta (Abeta) oligomers in the brain, rather than the amyloid plaques previously thought by many researchers to cause the disease.

The study, which was supported by the "Oligomer Research Consortium" of the Cure Alzheimer Fund and a MERIT Award from the Veterans Administration, appears in the journal Annals of Neurology.

"The buildup of was described over 100 years ago and has received the bulk of the attention in Alzheimer's pathology," said lead author Sam Gandy, MD, PhD, Professor of Neurology and Psychiatry, and Associate Director of the Alzheimer's Disease Research Center, Mount Sinai School of Medicine. "But there has been a longstanding debate over whether plaques are toxic, protective, or inert."

Several research groups had previously proposed that rather than plaques, floating clumps of amyloid (called oligomers) are the key components that impede brain cell function in Alzheimer's patients. To study this, the Mount Sinai team developed a mouse that forms only these oligomers, and never any plaques, throughout their lives.

The researchers found that the mice that never develop plaques were just as impaired by the disease as mice with both plaques and oligomers. Moreover, when a gene that converted oligomers into plaques was added to the mice, the mice were no more impaired than they had been before.

"These findings may enable the development of neuroimaging agents and drugs that visualize or detoxify oligomers," said Dr. Gandy. "New neuroimaging agents that could monitor changes in Abeta oligomer presence would be a major advance. Innovative neuroimaging agents that will allow visualization of oligomer accumulation, in tandem with careful clinical observations, could lead to breakthroughs in managing, slowing, stopping or even preventing Alzheimer's.

"This is especially important in light of research reported in March showing that 70 weeks of infusion of the Abeta immunotherapeutic Bapineuzumab® cleared away 25 percent of the Abeta plaque, yet no clinical benefit was evident."

Explore further: Know the brain, and its axons, by the clothes they wear

Provided by The Mount Sinai Hospital

4.8 /5 (5 votes)

Related Stories

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.