Genetic factor shown to regulate both heart failure and aneurysm disease

Apr 07, 2010

Case Western Reserve University School of Medicine researchers have identified a major indicator of two deadly diseases of the heart and blood vessels: heart failure and aortic aneurysm. The absence of the Kruppel-like Factor 15 (KLF15), when combined with stress, leads to both heart failure and aortic aneurysms. The genetic factor, KLF15, protects the heart and aorta's ability to maintain structural and functional integrity. Patients with these diseases were found to have reduced levels of the protective gene, and in an animal study, the researchers proved that deficiency of this single gene predisposes one to these cardiovascular diseases.

Furthermore, they show that KLF15 exerts its protective effects in the and aorta through a common molecular mechanism. Lastly, the researchers show that drugs targeting this molecular pathway can be used to treat heart failure and . The unprecedented findings are published in the April 7th online edition of Science Translational Medicine, an American Association for the Advancement of Science publication.

All the blood circulating through the human body must be pumped out by the heart and flow though the aorta. These two vital organs must maintain structural integrity in the face of mechanical and biochemical stress, otherwise lethal consequences such as heart failure, aortic aneurysms, and aortic dissection can develop. While it has been known that diseases of the heart and aorta can co-exist, for example in Marfan's syndrome, pregnancy, aging, and growth hormone excess, the cardiovascular diseases are typically treated independently. The identification of shared offers new promise for current and future treatment options.

"This is very rare to find a singular that governs the response of the entire cardiovascular system. Our research proves KLF15 governs the shared diseases of the heart and blood vessels," says Mukesh K. Jain, M.D., F.A.H.A., senior author of the study and Director of the Case Cardiovascular Research Institute at Case Western Reserve University and the Chief Research Officer for the Harrington-McLaughlin Heart and Vascular Institute at University Hospitals Case Medical Center. In 2002, while at Brigham and Women's Hospital/Harvard Medical School, Dr. Jain and his team of researchers discovered KLF15.

Dr. Jain, along with his fellow researchers from the University of Pennsylvania, University of Medicine and Dentistry of New Jersey, Geisinger Health System, and Harvard Medical School, first observed reduced KLF15 levels in human patients with heart failure or aortic aneurysms. Subsequently, they bred genetically-modified mice deficient in only KLF15; this was where the link between diseases was identified. A major mechanism by which KLF15 exerts its protective effects is through the inhibition of a protein called p53. In some human body tissues, p53 can protect against cancer with its ability to shut down cell growth and new blood vessel formation. However, the researchers found that excess activation of p53 in both the heart and aorta is harmful, particularly when there is KLF15 deficiency. In fact, the mice showed dramatic improvement when the p53 gene was inactivated. The study also showed that KLF15 can block p53's harmful effects on the cardiovascular system by interfering with a process called protein acetylation. Lastly, the research team used the newly discovered molecular pathway to show that blocking the acetylation of p53 with a compound called curcumin can also protect against heart and aortic disease. Curcumin is the active compound in turmeric, a spice commonly used in Asian cuisine. They hope to harness the function of KLF15 as a drug target which might allow them to selectively block only the harmful effects of p53 in the cardiovascular system, while maintaining its anti-cancer effects in other organs.

Cardiovascular diseases are the leading cause of death and disability in developed countries. Despite the widespread use of medication, many people still suffer complications from these devastating diseases. "The discovery of new that are amenable to therapeutic manipulation is of immense clinical value. Our current study demonstrates proof-of-principle that KLF15 deficiency causes and aortic aneurysm formation. Thus, we believe that boosting the protective effects of KLF15 in the heart and aorta can prevent the initiation or progression of these diseases," say Saptarsi M. Haldar, M.D. and Yuan Lu, Ph.D., co-first authors on the paper. Dr. Haldar is an Assistant Professor of Medicine and Dr. Lu is a Research Associate in the Case Cardiovascular Research Institute at Case Western Reserve University School of Medicine.

As they look to the future, the researcher team will enhance KLF15's health-giving effects using a variety of approaches. They hope to discover compounds that can increase KLF15 levels or augment its function in the cardiovascular system, which includes screening a library of compounds for their ability to increase levels of the genetic factor. The research also has exciting implications for Marfan's syndrome, a multisystem disease involving the aorta and heart. The current work suggests that the KLF15-p53 axis might be a disease-modifying factor in the syndrome and serve as a potential therapeutic target.

"We hope that such therapies would help maintain the normal pumping-function of the heart and the integrity of aortic structure and thereby prevent patients from developing life-threatening complications such as sudden cardiac death, aortic rupture and aortic dissection," concludes Dr. Jain.

Explore further: Mouse study reveals potential clue to extra fingers or toes

add to favorites email to friend print save as pdf

Related Stories

Blood sugar's manufacture limited by building blocks' supply

Apr 03, 2007

Researchers have discovered a factor that controls blood sugar's manufacture in a novel way: by limiting the supply of its building blocks. The findings are reported in the April issue of the journal Cell Metabolism, publis ...

Researchers find inflammation critical in aortic dissection

Nov 16, 2009

The aorta, the body's largest artery, stretches from the chest to below the kidneys, expanding and contracting with the pressure of blood driven directly into it by the heart. Although its walls are extraordinarily strong, ...

'Healthy' sterols may pose health risk

Jul 14, 2008

Plant sterols have been touted as an effective way to lower cholesterol and reduce the risk of heart disease. However, a research study in the July JLR has uncovered that these compounds do have their own risks, as they can ...

Discovery points way for new treatment for aneurysms

Jan 27, 2010

New research findings from a team at the Providence Heart + Lung Institute at St. Paul's Hospital and the University of British Columbia (UBC) may lead to new treatment options for abdominal aortic aneurysms (AAA) - a potentially ...

Research explains link between cholesterol and heart disease

Sep 18, 2007

Cholesterol contributes to atherosclerosis – a condition that greatly increases the risk of heart attack and stroke – by suppressing the activity of a key protein that protects the heart and blood vessels, researchers ...

Recommended for you

Stress reaction may be in your dad's DNA, study finds

46 minutes ago

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

2 hours ago

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

19 hours ago

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.