Inflammation research opens route to better pain relief

Mar 24, 2010

Research at the University of Leeds could pave the way to a new generation of painkillers by providing a new theory of how inflammation causes pain.

An international group of scientists led by Dr Nikita Gamper of the University's Faculty of Biological Sciences has discovered how two proteins play a key role in the way we feel , offering new targets on which drug development can be focused. The findings are published online today (March 24) in the .

"Pain originates from a series of electrical signals sent by nerve cells in outlying areas of the body to the and ultimately the brain," said Dr Gamper. "We still know very little about the mechanism by which these signals are generated, so existing are non-specific, designed to generally dull the reception of the signals in the central nervous system.

"Because they target the central nervous system, some stronger pain killers can provoke severe side effects, such as disorientation, drowsiness or nausea - and many of these drugs are addictive. Our research is trying to better understand where pain originates, to enable more targeted drugs to be developed that avoid these side effects."

Pain can be a healthy response, informing us that something in our bodies is going wrong, is damaged or at risk of being damaged. often distorts this healthy reaction, causing pain that lasts much longer than is needed to transmit the message, as is the case in toothache, sore throat or arthritis.

In research funded jointly by the Wellcome Trust and the Medical Research Council, Dr Gamper's team has discovered that a substance released at sites of inflammation - called bradykinin - manipulates two proteins commonly found at the damage-sensing terminals of peripheral nerve cells. When targeted by the bradykinin, these proteins then cause the nerve cells to send electrical 'pain' signals to the brain.

The research offers a new concept of how inflammation can cause pain and is the first time that one of these proteins - Calcium-activated chloride channel Ano1 - has been shown to have a role in pain transmission. The other protein, called M-type potassium channel, although previously linked to neuronal activity, was not known to have a role in inflammatory pain.

"The process we've identified takes place in the peripheral sensing neurons where the pain signal is generated," said Dr Gamper. "Targeting the peripheral nervous system for drug development would create painkillers that would leave the central nervous system untouched, thus reducing the likelihood of side effects."

Dr Gamper is now planning to study these proteins in more depth and identify their possible role in other types of pain, such as neuropathic pain and migraine.

Explore further: Tackling illness in premature babies with genetics and artificial noses

add to favorites email to friend print save as pdf

Related Stories

New mechanism underlying pain found

Oct 16, 2006

Researchers at Johnson & Johnson Pharmaceutical Research & Development (J&JPRD) today announced that they have discovered a new molecular mechanism that may underlie neuropathic pain. The clearer understanding of the root-cause ...

Protein found that may provide relief from neuropathic pain

Dec 05, 2007

Neuropathic pain is caused by injury to the peripheral nerves in diseases such as HIV/AIDS, shingles, and cancer or in repetitive motion disorders and trauma, and does not respond well to conventional pain-relieving drugs.

Study raises caution on new painkillers

Mar 12, 2008

A new class of painkillers that block a receptor called TRPV1 may interfere with brain functions such as learning and memory, a new study suggests. The experiments with rat brain found that the TRPV1 receptor regulates a ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

17 minutes ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

11 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

12 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

User comments : 0

More news stories

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...