Modified adult stem cells may be helpful in spinal cord injury

Feb 24, 2010

Researchers at UTHealth have demonstrated in rats that transplanting genetically modified adult stem cells into an injured spinal cord can help restore the electrical pathways associated with movement. The results are published in the Feb. 24 issue of the Journal of Neuroscience.

In spinal cord injury, demyelination, or the destruction of the in the , occurs. The myelin sheath, produced by cells called oligodendrocytes, wraps around the axons of nerves and helps speed activity and insulate electrical conduction. Without it, the nerves cannot send messages to make muscles move.

The research team, led by Qilin Cao, M.D., principal investigator and associate professor of neurosurgery at UTHealth (The University of Texas Health Science Center at Houston), discovered that transplanted (oligodendrocyte precursor cells or OPC) from the spinal cord could become oligodendrocytes. The new cells helped restore electrical pathways of the spinal cord and therefore, function, in a process called remyelination.

Cao said two important discoveries were isolating precursor cells from the adult spinal cord and, prior to transplanting them into the spinal cord, genetically modifying them to express ciliary neurotrophic factor (CNTF), a protein that encourages . In preliminary experiments, also published in this paper, CNTF was shown to facilitate survival and differentiation of OPCs in cell culture.

"Most importantly, the evidence of remyelination was shown to exactly coincide with the anatomical localization of these motor pathways in spinal cord white matter," Cao said. "These latter data provide confidence that the mechanism by which the grafted OPCs are enhancing functional recovery is through remyelination."

Previous studies by the team and other researchers have shown that grafted OPCs survive after grafting into an injured spinal cord and increase movement recovery, but the mechanical connection to remyelination had only been theorized. In this research, results showed that there was significantly enhanced behavioral recovery, return of electrophysiological conduction and ultra-structural evidence of remyelination.

The clinical significance is two-fold, Cao said: "First it confirms what has been suggested by these and other authors that stem cell grafting in attempts to remyelinate an injured spinal cord is a viable therapeutic strategy. Secondly, it strongly cautions that optimal recovery using such an approach will require more than simply grafting naďve ."

Explore further: Researchers track down cause of eye mobility disorder

Related Stories

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Study: Spinal cord can repair itself

Feb 14, 2007

U.S. scientists say they have disproved the long-held theory that the spinal cord is incapable of repairing itself. The Johns Hopkins University researchers say human nerve stem cells they transplanted into damaged spinal ...

Stem cells restore mobility in neck-injured rats (w/ Video)

Nov 10, 2009

(PhysOrg.com) -- The first human embryonic stem cell treatment approved by the FDA for human testing has been shown to restore limb function in rats with neck spinal cord injuries - a finding that could expand the clinical ...

Recommended for you

Researchers track down cause of eye mobility disorder

2 hours ago

Imagine you cannot move your eyes up, and you cannot lift your upper eyelid. You walk through life with your head tilted upward so that your eyes look straight when they are rolled down in the eye socket. ...

How kids' brain structures grow as memory develops

3 hours ago

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.