Modified adult stem cells may be helpful in spinal cord injury

Feb 24, 2010

Researchers at UTHealth have demonstrated in rats that transplanting genetically modified adult stem cells into an injured spinal cord can help restore the electrical pathways associated with movement. The results are published in the Feb. 24 issue of the Journal of Neuroscience.

In spinal cord injury, demyelination, or the destruction of the in the , occurs. The myelin sheath, produced by cells called oligodendrocytes, wraps around the axons of nerves and helps speed activity and insulate electrical conduction. Without it, the nerves cannot send messages to make muscles move.

The research team, led by Qilin Cao, M.D., principal investigator and associate professor of neurosurgery at UTHealth (The University of Texas Health Science Center at Houston), discovered that transplanted (oligodendrocyte precursor cells or OPC) from the spinal cord could become oligodendrocytes. The new cells helped restore electrical pathways of the spinal cord and therefore, function, in a process called remyelination.

Cao said two important discoveries were isolating precursor cells from the adult spinal cord and, prior to transplanting them into the spinal cord, genetically modifying them to express ciliary neurotrophic factor (CNTF), a protein that encourages . In preliminary experiments, also published in this paper, CNTF was shown to facilitate survival and differentiation of OPCs in cell culture.

"Most importantly, the evidence of remyelination was shown to exactly coincide with the anatomical localization of these motor pathways in spinal cord white matter," Cao said. "These latter data provide confidence that the mechanism by which the grafted OPCs are enhancing functional recovery is through remyelination."

Previous studies by the team and other researchers have shown that grafted OPCs survive after grafting into an injured spinal cord and increase movement recovery, but the mechanical connection to remyelination had only been theorized. In this research, results showed that there was significantly enhanced behavioral recovery, return of electrophysiological conduction and ultra-structural evidence of remyelination.

The clinical significance is two-fold, Cao said: "First it confirms what has been suggested by these and other authors that stem cell grafting in attempts to remyelinate an injured spinal cord is a viable therapeutic strategy. Secondly, it strongly cautions that optimal recovery using such an approach will require more than simply grafting naďve ."

Explore further: Cornell chemists show ALS is a protein aggregation disease

Related Stories

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Study: Spinal cord can repair itself

Feb 14, 2007

U.S. scientists say they have disproved the long-held theory that the spinal cord is incapable of repairing itself. The Johns Hopkins University researchers say human nerve stem cells they transplanted into damaged spinal ...

Stem cells restore mobility in neck-injured rats (w/ Video)

Nov 10, 2009

(PhysOrg.com) -- The first human embryonic stem cell treatment approved by the FDA for human testing has been shown to restore limb function in rats with neck spinal cord injuries - a finding that could expand the clinical ...

Recommended for you

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

Oct 22, 2014

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

Oct 22, 2014

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

User comments : 0