Modified adult stem cells may be helpful in spinal cord injury

Feb 24, 2010

Researchers at UTHealth have demonstrated in rats that transplanting genetically modified adult stem cells into an injured spinal cord can help restore the electrical pathways associated with movement. The results are published in the Feb. 24 issue of the Journal of Neuroscience.

In spinal cord injury, demyelination, or the destruction of the in the , occurs. The myelin sheath, produced by cells called oligodendrocytes, wraps around the axons of nerves and helps speed activity and insulate electrical conduction. Without it, the nerves cannot send messages to make muscles move.

The research team, led by Qilin Cao, M.D., principal investigator and associate professor of neurosurgery at UTHealth (The University of Texas Health Science Center at Houston), discovered that transplanted (oligodendrocyte precursor cells or OPC) from the spinal cord could become oligodendrocytes. The new cells helped restore electrical pathways of the spinal cord and therefore, function, in a process called remyelination.

Cao said two important discoveries were isolating precursor cells from the adult spinal cord and, prior to transplanting them into the spinal cord, genetically modifying them to express ciliary neurotrophic factor (CNTF), a protein that encourages . In preliminary experiments, also published in this paper, CNTF was shown to facilitate survival and differentiation of OPCs in cell culture.

"Most importantly, the evidence of remyelination was shown to exactly coincide with the anatomical localization of these motor pathways in spinal cord white matter," Cao said. "These latter data provide confidence that the mechanism by which the grafted OPCs are enhancing functional recovery is through remyelination."

Previous studies by the team and other researchers have shown that grafted OPCs survive after grafting into an injured spinal cord and increase movement recovery, but the mechanical connection to remyelination had only been theorized. In this research, results showed that there was significantly enhanced behavioral recovery, return of electrophysiological conduction and ultra-structural evidence of remyelination.

The clinical significance is two-fold, Cao said: "First it confirms what has been suggested by these and other authors that stem cell grafting in attempts to remyelinate an injured spinal cord is a viable therapeutic strategy. Secondly, it strongly cautions that optimal recovery using such an approach will require more than simply grafting naďve ."

Explore further: How nerve cells communicate with each other over long distances

Related Stories

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Study: Spinal cord can repair itself

Feb 14, 2007

U.S. scientists say they have disproved the long-held theory that the spinal cord is incapable of repairing itself. The Johns Hopkins University researchers say human nerve stem cells they transplanted into damaged spinal ...

Stem cells restore mobility in neck-injured rats (w/ Video)

Nov 10, 2009

(PhysOrg.com) -- The first human embryonic stem cell treatment approved by the FDA for human testing has been shown to restore limb function in rats with neck spinal cord injuries - a finding that could expand the clinical ...

Recommended for you

Why your favourite song takes you down memory lane

Aug 28, 2014

Music triggers different functions of the brain, which helps explain why listening to a song you like might be enjoyable but a favourite song may plunge you into nostalgia, scientists said on Thursday.

Transcranial Magnetic Stimulation of brain boosts memory

Aug 28, 2014

Stimulating a particular region in the brain via non-invasive delivery of electrical current using magnetic pulses, called Transcranial Magnetic Stimulation, improves memory, reports a new Northwestern Medicine ...

User comments : 0