The mystery of symmetry is revealed

Feb 19, 2010

(PhysOrg.com) -- Some of our organs, such as the liver and the heart, are lateralised. As our bodies develop they mostly display bilateral symmetry across the vertebral column.

A new molecular pathway, which plays a role in this in , has recently been discovered by a Franco-American team led by Olivier Pourquié at the Stowers Institute for Medical research, who moved a short while ago to the Institute of Genetics and Molecular and Cellular Biology (CNRS/University of Strasbourg). This work was published on Thursday in Nature.

Vertebral symmetry appears early in the course of embryonic development, at the time when somites are formed. Somites are cubic shaped structures from which the vertebrae and the muscles, in particular, are derived. Under the influence of an internal clock, pairs of somites develop, in a periodic manner, starting from the internal cellular layers of the embryo. Retinoic acid, a derivative of vitamin A, appears to play a significant role in controlling the symmetry of the somites. Moreover, it is known that semitogenesis becomes desynchronised in mice which are deficient in retinoic acid.

In a study performed on mouse embryos, the researchers investigated the Rere protein, also known as atrophin 2. They showed that this molecule participates in the activation of the signalling pathway for retinoic acid by forming a complex with two other proteins, Nr2f2 and p300, and a retinoic acid receptor. Mice mutated for the Rere gene show the same retarded somite formation as mice which are deficient in retinoic acid.

Their work also showed that the proteins, Nr2f2 and Rere, control the asymmetry of the signalling pathway for retinoic acid. This asymmetry is required to correct interference with the signals which determine the lateralisation of organs. Hence, this study improves our understanding of how the general symmetry of the body can be reconciled with the lateralisation of some organs.

In man, the anomalies in symmetric development of the somites could be responsible for vertebral symmetry disorders such as scoliosis. A defect in the regulation of functions performed by RERE or Nr2f2 on the retinoic acid signalling pathway may be implicated in the occurrence of these frequent, and sometimes acute, diseases.

Explore further: Researcher uses MRI to measure joint's geometry and role in severe knee injury

More information: “Rere controls retinoic acid signalling and somite bilateral symmetry”, Nature, February 2010. www.nature.com/nature/journal/… ull/nature08763.html

add to favorites email to friend print save as pdf

Related Stories

Study shows how embryos regulate vitamin A derivatives

Nov 20, 2007

Human embryos that get too much or too little retinoic acid, a derivative of Vitamin A, can develop into babies with birth defects. New research at UC Irvine shows for the first time how embryonic cells may regulate levels ...

Embryology study offers clues to birth defects (w/Video)

Jun 09, 2009

Gregg Duester, Ph.D., professor of developmental biology at Burnham Institute for Medical Research (Burnham), along with Xianling Zhao, Ph.D., and colleagues, have clarified the role that retinoic acid plays in limb development. ...

A new way to treat colon cancer?

Oct 10, 2006

Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments – a molecule that is implicated in 85 percent of colon cancer cases.

Recommended for you

Infant cooing, babbling linked to hearing ability

7 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

8 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

12 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

14 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments : 0