Protein identified that helps heart muscle contract

Feb 16, 2010

UCSF researchers have discovered that a protein called B1N1 is necessary for the heart to contract. The findings, published in the Feb. 16 issue of the open access journal PLoS Biology, shed light not only on what makes a heart beat but also on heart failure, a disease where cardiac cells are no longer able to contract and pump blood through the body.

"In all of us, a occurs about once every second. For each successful heart beat, millions of individual perform their own microscopic contractions, so the biology of normal heart function is based on the workings of individual heart cells. There is now less mystery to how each heart cell organizes itself to contract," said Robin Shaw, MD, PhD, an author of the study and a cardiologist in UCSF's and Transplantation Service.

Each contraction of a heart cell depends on tiny calcium channels in specialized pockets of membrane known as T-tubules. Correct positioning of these channels on the T-tubules is essential. Scientists have known for decades why the channels need to be on T-tubules, but were perplexed how they got there.

Ting-Ting Hong, MD, PhD, lead author and postdoctoral fellow in the Shaw Laboratory at UCSF, had a mental image of being carried on highways (known as microtubules) directly to membrane docking stations in the T-tubules. Hong confirmed her hypothesis of directed delivery of the channels and identified the protein docking station as BIN1. The study involved human heart cells and non-muscle cells that allowed researchers to recreate the delivery process using only the highways, channels and docking station. When the team mutated the docking station (BIN1), they confirmed that, like in heart failure, the cascade of signaling events necessary for heart contraction become dysfunctional.

Understanding how the heart cell organizes itself paves the way for investigators to understand what happens to the heart during heart failure.

"As we learn how healthy work, we develop a roadmap for understanding the changes that occur during heart failure," said Hong. "Now that we know about normal heart function, we can ask specific questions about what changes when disease occurs."

The goal of the research is to reverse the changes, and lessen the mortality associated with heart disease.

Explore further: Gamers helping in Ebola research

More information: Hong T-T, Smyth JW, Gao D, Chu KY, Vogan JM, et al. (2010) BIN1 Localizes the L-Type Calcium Channel to Cardiac T-Tubules. PLoS Biol 8(2): e1000312. doi:10.1371/journal.pbio.1000312

add to favorites email to friend print save as pdf

Related Stories

The beat goes on with AKAP18

Sep 28, 2007

A protein, known as AKAP18, could help the heart to beat faster in response to adrenaline or noradrenaline, according to a study published online this week in EMBO reports.

New heart failure device is tested

Oct 17, 2006

Physicians at 50 U.S. medical facilities are taking part in a multinational clinical trial of a device designed to help heart failure victims.

Heart derived stem cells develop into heart muscle

Apr 23, 2008

Dutch researchers at University Medical Center Utrecht and the Hubrecht Institute have succeeded in growing large numbers of stem cells from adult human hearts into new heart muscle cells. A breakthrough in stem cell research. ...

Stem cells to be injected into the heart

Aug 26, 2005

The University of Pittsburgh Medical Center will begin a clinical trial to determine the feasibility of injecting a patient's own stem cells into the heart.

Recommended for you

Protein in plasma may one day change transfusions

5 hours ago

In injured mice, the naturally occurring protein fibronectin is instrumental in stopping bleeding but interestingly also at preventing life-threatening blood clots – according to new research published ...

User comments : 0