Researchers create drug to keep tumor growth switched off

Feb 11, 2010

A novel -- and rapid -- anti-cancer drug development strategy has resulted in a new drug that stops kidney and pancreatic tumors from growing in mice. Researchers at the Moores Cancer Center at the University of California, San Diego, have found a drug that binds to a molecular "switch" found in cancer cells and cancer-associated blood vessels to keep it in the "off" position.

"We locked the kinase switch in the off position in cancer and in tumor-associated ," which differs from the way current inhibitors attempt to block active kinases, said David Cheresh, PhD, professor and vice chair of pathology at the UCSD School of Medicine and the Moores UCSD Cancer Center, who led the work.

The new approach employs scaffold-based chemistry combined with supercomputer technology, allowing for rapid screening and development of drugs that are more selective for the tumor. The development and screening processes were used to identify potential drug candidates able to halt a growth signaling enzyme, or kinase, which can foster tumor blood vessel and tumor growth. According to the researchers, the novel approach may become a useful strategy in cancer drug development. The study appears online the week of February 8, 2010, in the .

In this "rational design approach," Cheresh and his co-workers used the supercomputer at the San Diego Supercomputer Center to custom-design molecules that stabilized the inactive forms of two similar kinases, PDGFRβ and B-RAF - both of which are found to be activated in tumors and in blood vessels that feed tumors. Since PDGFRβ and B-RAF work cooperatively, keeping both turned off causes synergistic effects in tumors, according to Cheresh.

"We custom design a drug for a target that we know either plays a role in blood vessel angiogenesis or tumor invasion," said Cheresh. "By doing this on the computer screen and effectively locking the target in the off position, we can generate selective drugs that are expected to produce minimal side effects. Working with a series of chemical scaffolds, we are able to design specific interactions to fit certain targets in ."

They tested candidates for their effects on embryonic zebrafish blood vessels, which behave similarly to human cancer blood vessels. Molecules that blocked blood vessel growth in the fish were found to do the same in mice, and Cheresh hopes they will soon be tested in cancer patients.

The drug screen system has several advantages, Cheresh explained. Most standard screens test 400,000 candidates in test tubes to identify a single drug candidate. His group's screening method requires fewer than 100 compounds to be screened because they are rationally designed, look for specific types of targets, and use a zebrafish model, testing molecules in cells, tissues and organs for "physiological relevance." The zebrafish is a popular drug research model because it is transparent and the effects of drugs are easily monitored.

In addition, he said, the rational design approach provides drugs that are more selective, hitting desired targets and yielding fewer side effects.

Explore further: New disease mechanism discovered in lymphoma

Related Stories

Antifungal drug stops blood vessel growth

Apr 27, 2007

Researchers at Johns Hopkins have discovered to their surprise that a drug commonly used to treat toenail fungus can also block angiogenesis, the growth of new blood vessels commonly seen in cancers. The drug, itraconazole, ...

Recommended for you

New disease mechanism discovered in lymphoma

17 minutes ago

Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. ...

Researcher to cancer: 'Resistance will be futile'

7 hours ago

Turning the tables, Katherine Borden at the University of Montreal's Institute for Research in Immunology and Cancer (IRIC) has evoked Star Trek's Borg in her fight against the disease. "Cancer cells rapidly ...

How does prostate cancer form?

9 hours ago

Prostate cancer affects more than 23,000 men this year in the USA however the individual genes that initiate prostate cancer formation are poorly understood. Finding an enzyme that regulates this process ...

Low risk of malignancy for small complex adnexal masses

16 hours ago

(HealthDay)—For older women with small complex adnexal masses, the overall risk of malignancy is low, according to a study published in the December issue of the American Journal of Obstetrics & Gynecology.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tsltan
not rated yet Feb 12, 2010
I was unable to find the cited PNAS paper?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.