Study identifies potential way to reverse cancer cell metabolism and tumor growth

Jan 22, 2010

A team of scientists led by Professor Adrian Krainer, Ph.D., of Cold Spring Harbor Laboratory has discovered molecular factors in cancer cells that boost the production of an enzyme that helps alter the cells' glucose metabolism. The altered metabolic state, called the Warburg effect, promotes extremely rapid cell proliferation and tumor growth.
Adrian Krainer, Ph.D.

Discovered eighty years ago by Nobel Prize-winning scientist Otto Warburg, this altered metabolism in cancer cells is most critically mediated by a protein called PK-M2 (pyruvate kinase M2). This is one of two versions - or isoforms - of the enzyme pyruvate kinase, whose other isoform, PK-M1, is harmless.

In a study published online ahead of print in the , Krainer and colleagues report their discovery of three factors that contribute to high levels of PK-M2 in cancer cells, in part by suppressing production of PK-M1.

"These findings suggest a new way in which cancer's altered might be targeted for therapeutic benefit," explains Krainer. "Drugs that inhibit these factors and reverse the Warburg effect might work as anti-cancer agents." The study was performed in collaboration with Professor Lewis Cantley, Ph.D., and his colleagues at Harvard Medical School and The Broad Institute, in Cambridge, Mass.

Cancer cells consume glucose at a much higher rate than normal cells, but use very little glucose to produce energy, spending the rest instead on cell-building material. They also produce huge amounts of a byproduct called lactate. PK-M2, which facilitates this alternate metabolic lifestyle in cancer cells, was recently shown by the Cantley laboratory to be critical for and growth.

This isoform and its non-cancerous counterpart PK-M1, which is found only in normal cells, both arise from the same gene, PK-M, via alternative splicing, a process that allows a single gene to produce multiple proteins. The initial RNA copy of a gene's DNA includes unnecessary pieces called introns that are first spliced out. The remaining bits, called exons, can be stitched back together in different ways by the cell's splicing machinery to form different RNAs that can then give rise to different proteins.

In the case of the PK-M gene, its RNA undergoes alternative splicing in a mutually exclusive fashion, giving rise to either the M1 or the M2 isoform. Krainer, an expert on alternative splicing, has been focused on understanding how the benign M1 isoform is switched off and the dangerous M2 isoform switched on in cancer cells. His team began by tracking down splicing factors and mechanisms that cause cancer cells to exclusively produce the M2 isoform.

By examining the levels of various splicing factors in numerous types of cancer cells, the scientists have narrowed the list of suspects to three proteins so far. All three are present at high levels in , and repress the splicing of the harmless M1 isoform. This, by default, causes cells to produce only the M2 isoform.

The scientists could largely reverse this situation - restoring M1 production while decreasing M2 levels and lactate production - by forcing a reduction in the levels of the three splicing repressors. Whether this switch back to normal metabolism also impedes cancer cells' rapid growth remains to be tested.

"The cells didn't completely stop producing M2 when the three repressor proteins were blocked, which suggests that there might be other splicing factors that influence the switch between the two isoforms," explains Krainer. The team is now looking for these other potential splicing regulators.

"The field of cancer metabolism has reemerged, but several fundamental questions still remain about how the Warburg effect works," says Krainer. "We hope that our research on how alternative splicing regulates cellular metabolism will help fill in this puzzle and uncover new molecular drug targets."

Explore further: Possibilities for personalised vaccines revealed at ESMO Symposium

More information: "The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism" was published online before print on January 19, 2010, in PNAS. The paper can be found at www.pnas.org/content/early/201… 845107.full.pdf+html

Related Stories

Study helps explain fundamental process of tumor growth

Mar 12, 2008

Nearly 80 years ago, scientist Otto Warburg observed that cancer cells perform energy metabolism in a way that is different from normal adult cells. Many decades later, this observation was exploited by clinicians to better ...

In vivo visualization of alternative splicing

Jan 28, 2008

The February 1 cover of G&D features an unprecedented use of fluorescent proteins to visualize developmentally regulated alternative mRNA splicing in a living organism.

Cancers' sweet tooth may be weakness

Nov 18, 2009

The pedal-to-the-metal signals driving the growth of several types of cancer cells lead to a common switch governing the use of glucose, researchers at Winship Cancer Institute of Emory University have discovered.

Recommended for you

Immune checkpoint inhibitors may work in brain cancers

20 hours ago

New evidence that immune checkpoint inhibitors may work in glioblastoma and brain metastases was presented today by Dr Anna Sophie Berghoff at the ESMO Symposium on Immuno-Oncology 2014 in Geneva, Switzerland.

New model of follow up for breast cancer patients

23 hours ago

Public health researchers from the University of Adelaide have evaluated international breast cancer guidelines, finding that there is potential to improve surveillance of breast cancer survivors from both a patient and health ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.