Scientists reveal how tendons shape developing bones

Jan 14, 2010

Bones, muscles and tendons work together to provide the perfect balance between stability and movement in the skeleton. Now, Weizmann Institute scientists show that this partnership begins in the embryo, when the bones are still taking shape. The study, published in a recent issue of Developmental Cell, describes a previously unrecognized interaction between tendons and bones that drives the development of a strong skeletal system.

'Our , with its bones, joints and muscle connections serves us so well in our daily lives that we hardly pay attention to this extraordinary system,' says Dr. Elazar Zelzer of the Weizmann Institute's Molecular Genetics Department. 'Although previous research has uncovered mechanisms that contribute to the development and growth of each component of this complex and wonderfully adaptable organ system, specific interactions between bones, muscles and tendons that drive the assembly of the musculoskeletal system are not fully understood.'

Zelzer, research student Einat Blitz, Sergey Viukov and colleagues, were interested in uncovering the molecular mechanisms that regulate the formation of ridges - bony protuberances that provide a stable anchoring point for the tendons that connect muscles with bones. Bone ridges are critical for the skeleton's ability to cope with the considerable mechanical stresses exerted by the muscles. The researchers used embryonic mouse skeletons to study a bone ridge called the deltoid tuberosity, located on the humerus bone in the arm.

They discovered, to their surprise, that rather than being shaped by processes within the skeleton, bone-ridge formation was directly regulated by tendons and muscles in a two-phase procedure. First, the embryonic tendons initiated bone-ridge formation by attaching to the skeleton. This interaction induced the tendon cells to express a specific protein called scleraxis, which in turn, led to the production of another protein, BMP4 - a molecule involved in the onset of . Blocking BMP4 production in tendon cells prevented deltoid tuberosity bone ridge formation. In the second phase, the subsequent growth and ultimate size of the deltoid tuberosity was directly regulated by muscle activity.

The results demonstrate that tendons play an active role in initiating bone ridge patterning. Zelzer: 'These findings provide a new perspective on the regulation of skeletogenesis in the context of the musculoskeletal system, and they shed light on an important mechanism that underlies the assembly of this system.'

Explore further: Are my muscular dystrophy drugs working?

add to favorites email to friend print save as pdf

Related Stories

Tendons shape bones during embryonic development

Dec 14, 2009

In all vertebrates, including humans, bones, muscles and tendons work together to give the skeleton its characteristic balance of stability and movement. Now, new research uncovers a previously unrecognized interaction between ...

How embryo movement stimulates joint formation

May 18, 2009

A new study uncovers a molecular mechanism that explains why joints fail to develop in embryos with paralyzed limbs. The research, published by Cell Press in the May issue of the journal Developmental Cell, answers a long ...

Accelerated bone turnover remains after weight loss

Jul 28, 2008

When a person is losing a significant amount of weight, they expect to notice changes in their body. However, they may overlook changes happening in their bones. During weight loss through calorie-restricted diets, bones ...

Recommended for you

Are my muscular dystrophy drugs working?

5 hours ago

People with muscular dystrophy could one day assess the effectiveness of their medication with the help of a smartphone-linked device, a new study in mice suggests. The study used a new method to process ...

Cell death proteins key to fighting disease

15 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

Oct 30, 2014

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.