Scientists identify target that may inhibit HIV infectivity

Jan 04, 2010

Scientists at the Gladstone Institute of Virology and Immunology (GIVI) have discovered a new agent that might inhibit the infectivity of HIV. The agent, surfen, impairs the action of a factor in semen that greatly enhances the viral infection. Surfen might be used to supplement current HIV microbicides to greatly reduce HIV transmission during sexual contact.

The discovery was made by Nadia Roan, PhD, a senior fellow in the laboratory of GIVI Director Warner Greene, MD, PhD. Surfen is a small molecule that inhibits the actions of certain polysaccharide molecules called heparan sulfate proteoglycans (HSPG) that are found on the surface of cells. Importantly for , it also interferes with the action of semen-derived enhancer of viral infection (SEVI). The discovery was published in the current issue of the .

"Surprisingly, although readily replicates once inside the body, the virus struggles to establish a beachhead of infection during ," said Greene, who is senior author on the study. "We have been studying SEVI, a naturally occurring factor present in semen that can make HIV thousands of times more infectious. Knowing more about surfen, a SEVI inhibitor, might enable us to lower transmission rates of HIV."

SEVI is a breakdown product of prostatic acid phosphatase, a common protein in semen. Under certain conditions, SEVI can increase HIV infectivity 100,000 times by facilitating the attachment of viruses to target cells. Because the majority of all HIV infections are thought to result from sexual contact (during which semen is either the vehicle carrying HIV or is present during the infection process), SEVI might have a significant impact on HIV transmission rates. Surfen interferes with the binding of SEVI to both target cells and HIV-1 virions but does not cause the SEVI fibrils to break up.

"Because SEVI can so greatly enhance HIV infectivity, supplementing current HIV candidates with SEVI inhibitors, such as surfen, might increase their potency and overall effectiveness," Greene explained.

Previously, the researchers found that negatively charged polymers, such as heparin sulfate, interfere with the binding of SEVI to target cells. This led them to hypothesize that the SEVI fibrils bind target cells by interacting with cell-surface HSPG, naturally occurring anionic carbohydrate polymers with a structure that is closely related to heparin sulfate.

"SEVI has eight basic amino acids which makes this factor very positively charged," said Roan, lead author on the study. "In previous work, we showed that the ability of SEVI to enhance infection was dependent on these positive charges. We reasoned that these positive charges may be interacting with negatively charged groups on HSPG of target cells."

The scientists looked for antagonists of HSPG that might interfere with the binding of SEVI to the virus and target cells. They focused on surfen (bis-2-methyl- 4-amino-quinolyl-6-carbamide), which was first described in 1938 and reported to have anti-inflammatory and anti-bacterial activity. The team found that surfen inhibits enhancement of HIV-1 infection mediated by pure SEVI or semen. They further demonstrated that surfen interferes with the binding of SEVI to both target cells and HIV-1 virions.

"Because SEVI can markedly influence HIV infectivity, it forms a rather attractive target for future therapies" said Greene. "For example, we might be able to create combination microbicides that include agents targeting both the virus and host factors promoting infection. Such combinations might greatly diminish the spread of HIV; it is a target we are energetically pursuing."

Explore further: Study models ways to cut Mexico's HIV rates

Related Stories

An atomic-level look at an HIV accomplice

Nov 19, 2009

(PhysOrg.com) -- Since the discovery in 2007 that a component of human semen called SEVI boosts infectivity of the virus that causes AIDS, researchers have been trying to learn more about SEVI and how it works, in hopes of ...

Sperm may play leading role in spreading HIV

Oct 26, 2009

Sperm, and not just the fluid it bathes in, can transmit HIV to macrophages, T cells, and dendritic cells (DCs), report a team led by Ana Ceballos at the University of Buenos Aires in Argentina. By infecting ...

Human testis harbors HIV-1 in resident immune cells

Nov 27, 2006

Researchers have demonstrated HIV replication within resident immune cells of the testis, providing an explanation for the persistence of virus in semen even after effective highly active antiretroviral therapy. The related ...

UCSF scientists find new facts about HIV

Dec 07, 2005

University of California-San Francisco scientists have discovered how the human immunodeficiency virus can be kept dormant and hidden in immune cells.

Recommended for you

Obese British man in court fight for surgery

Jul 11, 2011

A British man weighing 22 stone (139 kilograms, 306 pounds) launched a court appeal Monday against a decision to refuse him state-funded obesity surgery because he is not fat enough.

2008 crisis spurred rise in suicides in Europe

Jul 08, 2011

The financial crisis that began to hit Europe in mid-2008 reversed a steady, years-long fall in suicides among people of working age, according to a letter published on Friday by The Lancet.

New food labels dished up to keep Europe healthy

Jul 06, 2011

A groundbreaking deal on compulsory new food labels Wednesday is set to give Europeans clear information on the nutritional and energy content of products, as well as country of origin.

Overweight men have poorer sperm count

Jul 04, 2011

Overweight or obese men, like their female counterparts, have a lower chance of becoming a parent, according to a comparison of sperm quality presented at a European fertility meeting Monday.

User comments : 0