Unusual protein modification involved in muscular dystrophy, cancer

Dec 31, 2009

With the discovery of a new type of chemical modification on an important muscle protein, a University of Iowa study improves understanding of certain muscular dystrophies and could potentially lead to new treatments for the conditions.

The findings, which appear in the Jan. 1, 2010, issue of the journal Science, may also have implications for detecting metastasizing cancer cells.

After they are initially made, most proteins are modified through the addition of sugar chains, fats or other chemical groups. These modifications can completely change how a protein works and where it is located in the body. Disruption of these modifications can alter , too, and can lead to disease.

The UI study focused on dystroglycan, a cell membrane protein that is disrupted in many forms of . Normal dystroglycan is modified with a unique sugar chain that allows the protein to "glue" muscle membranes to the basal lamina -- a tough layer of extracellular proteins. This arrangement reinforces the fragile muscle membrane and prevents small tears that occur naturally from expanding and damaging the membrane.

Recent work, including studies by the UI team, show that disrupting dystroglycan's ability to attach to the basal lamina causes congenital muscular dystrophies and also leads to cancer progression in epithelial cell cancer. In these conditions, the dystroglycan sugar chain is incompletely or incorrectly assembled and the dystroglycan cannot bind tightly to laminin.

"Dystroglycan is a complex and unusual glycoprotein. It is heavily covered with many types of sugars. We wanted to know the shape and make up of the unique sugar chain that allows dystroglycan to bind to laminin," said study leader Kevin Campbell, Ph.D., professor and head of molecular physiology and biophysics at the UI Roy J. and Lucille A. Carver College of Medicine and a Howard Hughes Medical Institute investigator.

Lead study author Takako Yoshida-Moriguchi, Ph.D., a postdoctoral researcher in Campbell's lab, used a combination of biochemical methods and chemical and structure analysis to determine that a critical link within the sugar chain involves a phosphate group. This type of link is found in yeast and fungi but has not previously been found in higher organisms like mammals.

"This phosphate link is very unusual, which may explain why the actual structure of dystroglycan's laminin-binding sugar chain has been a mystery for many years despite the efforts of numerous research teams," said Campbell, who also holds the Roy J. Carver Chair of Physiology and Biophysics. "The findings help explain what is happening in congenital muscular dystrophies where the dystroglycan sugar chain is truncated and ends at the phosphate. The bare phosphate does not bind laminin; it has to be further modified."

Several enzymes are involved in building the sugar chain beyond the phosphate, and mutations in these enzymes are the cause of congenital muscular dystrophies.

"If we can discover the entire structure and make up of the sugar chain beyond the phosphate link, we might be able to target some of the enzymes involved in building the sugar chain, and thus, develop therapies to treat congenital muscular dystrophies," Campbell said.

In certain cancer cells, one of these enzymes, known as LARGE, also is suppressed. Campbell speculated that loss of LARGE activity produces dystroglycan that is unable to interact with the basal lamina, which makes the cancer cells more mobile and allows them to escape into the bloodstream. The study's findings could lead to new methods for tracking metastasizing .

Explore further: Muscular dystrophy: Repair the muscles, not the genetic defect

Related Stories

Faulty cell membrane repair causes heart disease

Jul 03, 2007

During vigorous exercise, heart muscle cells take a beating. In fact, some of those cells rupture, and if not for a repair process capable of resealing cell membranes, those cells would die and cause heart damage (cardiomyopathy).

Potential therapy for congenital muscular dystrophy

Dec 30, 2008

Current research suggests laminin, a protein that helps cells stick together, may lead to enhanced muscle repair in muscular dystrophy. The related report by Rooney et al, "Laminin-111 restores regenerative capacity in a ...

Cell 'anchors' required to prevent muscular dystrophy

Jan 13, 2009

A protein that was first identified for playing a key role in regulating normal heart rhythms also appears to be significant in helping muscle cells survive the forces of muscle contraction. The clue was a laboratory mouse ...

Laminin builds the neuromuscular synapse

Sep 15, 2008

Like a plug and a socket, a nerve and a muscle fiber mesh at the neuromuscular junction. New work by Nishimune et al published in the Journal of Cell Biology reveals that an extracellular matrix protein called laminin shapes ...

Controlling for size may also prevent cancer

Sep 20, 2007

Scientists at Johns Hopkins recently discovered that a chemical chain reaction that controls organ size in animals ranging from insects to humans could mean the difference between normal growth and cancer. The study, published ...

Recommended for you

Dendritic cells affect onset and progress of psoriasis

Sep 12, 2014

Different types of dendritic cells in human skin have assorted functions in the early and more advanced stages of psoriasis report researchers in the journal EMBO Molecular Medicine. The scientists suggest that new strate ...

Approach to deadly sepsis infections continues to vary

Sep 12, 2014

Treatment practices for patients hospitalised with the potentially fatal infection known as "sepsis" will continue to vary because of individual differences between hospitals and countries, according to University of Adelaide ...

User comments : 0