New insight in nerve cell communication

Dec 22, 2009
Right: Brain-lipid vesicles. Smaller "dots" indicate smaller vesicles. Left: BAR domain protein. The intensity of the dot indicates the amount of BAR bound to the vesicle. The smaller the vesicle, the more curved membrane, and the more binding of BAR. Credit: Stamou

Communication between nerve cells is vital for our bodies to function. Part of this communication happens through vesicles containing signalling molecules called neurotransmitters. The vesicle fuses with the nerve cell membrane; the neurotransmitters are released and quickly recorded by the next nerve cell. It is crucial that new vesicles constantly are produced for the nerve cell communication continuously to take place. If parts of this communication do not work, it leads to nerve pain like phantom pain following amputation.

New discoveries on a nanoscale

- In patients with , part of the pathological picture is a defect in a domain we call BAR. We have studied how BAR binds to small membrane vesicles of different size. We expect that the new knowledge can be used to combat nerve pain in the future, explains Associate Professor Dimitrios Stamou, Bio-Nanotechnology Laboratory, Nano-Science Center and the Department of Neuroscience and Pharmacology. Dimitrios Stamou has led the work.

- We have used nanotechnology techniques, which give us the unique opportunity to study the binding of proteins to individual vesicles. Earlier studies have been performed in solutions where you measure a large number of vesicles and proteins at a time. This gives an average value of binding and "masks out" a large number of important information that we can retrieve by measurements on single vesicles, says Dimitrios Stamou.

Error in communication

More and more studies - this study included, show that the curvature of the membrane is absolutely central to the binding of proteins to cell membranes - the greater the curvature, the greater the binding. This also applies to in the brain. It therefore provides an important insight for the overall understanding of how nerve cells communicate with each other and for treating diseases where the communication has failed.

- To our great surprise we find that BAR binds to the membrane vesicles via small cracks in the vesicle membrane. We had expected that BAR bound to the small round membrane vesicles both because of its banana shaped structure, which fits with the shape of the vesicle, and by means of an attraction between "the banana's" positive surface and vesicle's negative surface. But instead, it is the hydrophobic part of BAR that is involved in binding, explains Dimitrios Stamou.

Explore further: Safe driving period calculated following first-time seizure

Provided by University of Copenhagen

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Live recordings of cell communication

Aug 06, 2009

Neurons communicate with each other with the help of nano-sized vesicles. Disruption of this communication process is responsible for many diseases and mental disorders like e.g. depression. Nerve signals travel from one ...

A new 'bent' on fusion

Aug 20, 2009

(PhysOrg.com) -- Success in soccer sometimes comes with "bending it like Beckham." Success in cellular fusion -- as occurs at the moment of conception and when nerve cells exchange neurotransmitters -- requires that a membrane ...

Viewing dye-packed vesicles causes them to explode

Sep 25, 2007

It’s a long-standing question: Can just the act of observing an experiment affect the results? According to a new study by Rockefeller University scientists, if the experiment uses a fluorescent dye called acridine orange, ...

Recommended for you

Children with autism have extra synapses in brain

16 hours ago

Children and adolescents with autism have a surplus of synapses in the brain, and this excess is due to a slowdown in a normal brain "pruning" process during development, according to a study by neuroscientists ...

Learning to play the piano? Sleep on it!

18 hours ago

According to researchers at the University of Montreal, the regions of the brain below the cortex play an important role as we train our bodies' movements and, critically, they interact more effectively after ...

User comments : 0