New genes for lung disease discovered

Dec 13, 2009

(PhysOrg.com) -- Scientists have discovered five genetic variants that are associated with the health of the human lung. The research by an international consortium of 96 scientists from 63 centres in Europe and Australia sheds new light on the molecular basis of lung diseases.

The new findings provide hope for better treatment for lung diseases like Chronic Obstructive Pulmonary Disease (COPD) and asthma. In the past it has been difficult to develop new treatments because the molecular pathways that affect the health of the lung are not completely understood. It's hoped the new pathways discovered could in the future be targeted by drugs.

The ground-breaking research involved a genetic study of 2.5 million sites across the human genome involving samples from 20,000 people across the world. The consortium was led by Dr Martin Tobin from the University of Leicester and Professor Ian Hall from The University of Nottingham.

The research, part-funded by the Medical Research Council (MRC) and Asthma UK, is published today in . It represents a significant advance because it is the first time that these five common genetic variations have been definitely linked with lung function.

The scientists said: "This work is important because until now we have known very little about the genetic factors that determine an individual's lung function. By identifying the genes important in determining lung function, we can start to unravel the underlying mechanisms which control both lung development and . This will lead to a better understanding of diseases such as chronic obstructive pulmonary disease (COPD) and asthma. Crucially, it could open up new opportunities to manage and treat patients with lung conditions".

The authors added: "A large reduction in lung function occurs in (COPD), which affects around 1 in 10 adults above the age of 40 and is thought to be the fourth most common cause of death worldwide. Smoking is the major risk factor for development of COPD. Lung function and COPD cluster within families, indicating that variations in genes also predispose individuals to reduced lung function.

"The scientists of the SpiroMeta consortium compared genetic variants at each of 2.5 million sites across the human genome in over 20,000 individuals of European ancestry with their lung function measures. In five different locations in the human genome, genetic variants resulted in alterations in . The scientists showed that these were real findings by checking the effects of the same variants in over 33,000 additional individuals. They also compared their results to those of a second consortium, CHARGE, which has published a paper in the same issue of the journal.

The scientists emphasise that they do not expect these findings to lead to immediately to genetic tests to predict who will develop . What is more important, they say, is that the findings will help understand the underlying causes of lung diseases and thus may indicate new ways of treating the condition.

"The research would not have been possible without the generous support of the participants of the contributing studies from the UK, Europe and Australia, to whom we offer our thanks."

Source: University of Leicester (news : web)

Explore further: Scientists develop genome-wide mutation hunting computational software for genomic medicine

add to favorites email to friend print save as pdf

Related Stories

Changes in gene may stunt lung development in children

Mar 26, 2009

Mutations in a gene may cause poor lung development in children, making them more vulnerable to diseases such as chronic obstructive pulmonary disease (COPD) later in life, say researchers at the University of Pittsburgh ...

Recommended for you

Study finds crucial step in DNA repair

Aug 18, 2014

Scientists at Washington State University have identified a crucial step in DNA repair that could lead to targeted gene therapy for hereditary diseases such as "children of the moon" and a common form of ...

User comments : 0