Music and speech based on human biology (w/ Video)

Dec 03, 2009

(PhysOrg.com) -- A pair of studies by Duke University neuroscientists shows powerful new evidence of a deep biological link between human music and speech.

The two new studies found that the musical scales most commonly used over the centuries are those that come closest to mimicking the physics of the human voice, and that we understand emotions expressed through music because the music mimics the way emotions are expressed in . Composers have long exploited the perception of minor chord music as sad and major chord music as happy, now the Duke team thinks they know why.

In a paper appearing in the (JASA), the Duke team, led by Dale Purves, a professor of neurobiology, found that sad or happy speech can be categorized in major and minor intervals, just as music can. So your mother was right: It's not only the words you say, but how you say them.

This video is not supported by your browser at this time.

In a second paper appearing Dec. 3 in the online journal , Kamraan Gill, another member of the team, found the most commonly used musical scales are also based on the physics of the vocal tones humans produce.

"There is a strong biological basis to the aesthetics of sound," Purves said. "Humans prefer tone combinations that are similar to those found in speech."

This evidence suggests the main biological reason we appreciate music is because it mimics speech, which has been critical to our evolutionary success, said Purves, who is also director of Duke's Neuroscience and Behavioral Disorders Program and executive director of the A*STaR Neuroscience Research Partnership at the Duke-NUS Graduate Medical School in Singapore.

To study the emotional content of music, the Duke team collected a database of major and minor melodies from about 1,000 classical music compositions and more that 6,000 folk songs and then analyzed their tonal qualities.

They also had 10 people speak a series of single words with 10 different vowel sounds in either excited or subdued voices, as well as short monologues.

The team then compared the tones that distinguished the major and minor melodies with the tones of speech uttered in the different emotional states. They found the sound spectra of the speech tones could be sorted the same way as the music, with excited speech exhibiting more major musical intervals and subdued speech more minor ones.

The tones in speech are a series of harmonic frequencies, whose relative power distinguishes the different vowels. Vowels are produced by the physics of air moving through the vocal cords; consonants are produced by other parts of the vocal tract.

In the PLOS One paper, the researchers argue the harmonic structure of vowel tones forms the basis of the musical scales we find most appealing. They show the popularity of musical scales can be predicted based on how well they match up with the series of harmonics characteristic of vowels in speech.

Although there are literally millions of scales that could be used to divide the octave, most human music is based on scales comprised of only five to seven tones. The researchers argue the preference for these particular tone collections is based on how closely they approximate the harmonic series of tones produced by humans.

Though they only worked with western music and spoken English, there is reason to believe these findings are more widely applicable. Most of the frequency ratios of the chromatic musical scale can be found in the speech of a variety of languages. Their analysis included speakers of Mandarin Chinese, said Duke neuroscience graduate student Daniel Bowling, who is the first author on the JASA paper, and this showed similar results.

"Our appreciation of music is a happy byproduct of the biological advantages of speech and our need to understand its ," Purves said.

It would be hard to say whether singing or speech came first, but graduate student Dan Bowling supposes "emotional communication in both speech and music is rooted in earlier non-lingual vocalizations that expressed emotion."

More information:

Journal of the Acoustical Society of America - asa.aip.org/jasa.html
• Public Library of Science - PLOS One - www.plosone.org/home.action; Article: www.plosone.org/article/info%3… journal.pone.0008144

Source: Duke University (news : web)

Explore further: Lost memories might be able to be restored, new study indicates

add to favorites email to friend print save as pdf

Related Stories

Essential tones of music rooted in human speech

May 24, 2007

The use of 12 tone intervals in the music of many human cultures is rooted in the physics of how our vocal anatomy produces speech, according to researchers at the Duke University Center for Cognitive Neuroscience.

Looking for the origins of music in the brain

Oct 20, 2009

Music serves as a natural and non-invasive intervention for patients with severe neurological disorders to promote long-term memory, social interaction and communication. However, there is currently no plausible explanation ...

Research finds music training 'tunes' human auditory system

Mar 12, 2007

A newly published study by Northwestern University researchers suggests that Mom was right when she insisted that you continue music lessons -- even after it was clear that a professional music career was not in your future.

Speakers of different languages perceive rhythm differently

Nov 30, 2006

Do the sounds of our native languages affect how we hear music and other non-language sounds" A team of American and Japanese researchers has found evidence that native languages influence the way people group non-language ...

Language of music really is universal, study finds

Mar 19, 2009

Native African people who have never even listened to the radio before can nonetheless pick up on happy, sad, and fearful emotions in Western music, according to a new report published online on March 19th in Current Biology. The re ...

Recommended for you

Researchers unlock mystery of skin's sensory abilities

17 hours ago

Humans' ability to detect the direction of movement of stimuli in their sensory world is critical to survival. Much of this stimuli detection comes from sight and sound, but little is known about how the ...

Tackling neurotransmission precision

Dec 18, 2014

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.