Scientists find clue to mystery of biological clock

Nov 30, 2009
Dr. Sebastian Kadener (left) with his student, Uri Weissbein, at the Hebrew University of Jerusalem, who have done work on the mechanism of the biological clock. (Hebrew University photo)

How does our biological system know that it is supposed to operate on a 24-hour cycle? Scientists at the Hebrew University of Jerusalem have discovered that a tiny molecule holds the clue to the mystery.

Human as well as most living organisms on earth possess circadian a (24-hour) life rhythm. This rhythm is generated from an internal clock that is located in the brain and regulates many bodily functions, including the sleep-wake cycle and eating.

Although the evidence for their existence is obvious and they have been studied for more than 150 years, only recently the mechanisms that generate these rhythms have begun to be unraveled.

A researcher of the Alexander Silberman Institute of Life Sciences at the Hebrew University, Dr. Sebastian Kadener, and one of his students, Uri Weissbein, are among a collaborative group of researchers that have now found that tiny molecules known as miRNAs are central constituents of the circadian clock. Their discovery holds wide-ranging implications for future therapeutic treatment to deal with sleep deprivation and other common disorders connected with the daily life cycle.

The sleep-wake cycle, the most characterized manifestation of the circadian clock, is generated thanks to specialized found both in humans and fruitflies. (The mechanism governing the in fruitflies is almost identical to the one mammals -- and humans -- have.)

These neurons have the striking capability of counting time very accurately via a complex process of gene activation and repression that result in a tightly controlled process that takes exactly 24 hours.

The new research by Dr. Kadener and his colleagues, published in an article in the journal (and that was highlighted in Nature Review ), has shown that a new mode of regulation has a pivotal importance for the ability of our to accurately count those 24 hours each day. Specifically, they have shown that the very tiny miRNA molecules are necessary for the circadian rhythms to function.

MiRNAs have recently been discovered and have been shown to be involved in different processes in animals. By the use of new state-of-the-art techniques (most of them developed in the present study) the authors demonstrate that one specific miRNA (called bantam) recognizes and regulates the translation of the gene clock.

This constitutes the first example of a defined miRNA-gene regulation in the central clock. Perhaps even more importantly, the researchers were among the first to prove that there is a clear role of miRNA regulation in the brain in general and behavior in particular.

Source: Hebrew University of Jerusalem

Explore further: New mapping approach lets scientists zoom in and out as the brain processes sound

add to favorites email to friend print save as pdf

Related Stories

Genetic link between body clocks and blood pressure

Aug 31, 2007

A region of DNA involved in the body’s inbuilt 24 hour cycle (the circadian rhythm) is also involved in controlling blood pressure, report scientists from the Wellcome Trust Centre for Human Genetics (WTCHG) at the University ...

Molecular partnership controls daily rhythms, body metabolism

Nov 26, 2008

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has discovered a key molecular partnership that coordinates ...

Recommended for you

Birthday matters for wiring-up the brain's vision centers

9 hours ago

Researchers at the University of California, San Diego School of Medicine have evidence suggesting that neurons in the developing brains of mice are guided by a simple but elegant birth order rule that allows them to find ...

How is depression related to dementia?

Jul 30, 2014

A new study by neuropsychiatric researchers at Rush University Medical Center gives insight into the relationship between depression and dementia. The study is published in the July 30, 2014, online issue of Neurology, the me ...

User comments : 0