Arsenic biomethylation required for oxidative DNA damage

Nov 23, 2009

Biomethylation of arsenic compounds appears to cause oxidative DNA damage and to increase their carcinogenicity, according to a new study published online November 23 in the Journal of the National Cancer Institute.

Although biomethylation was once believed to detoxify inorganic , it is now thought to enhance its toxicity and potentially its carcinogenicity.

To assess the role of arsenic biomethylation in oxidative DNA damage in mice, Michael P. Waalkes, Ph.D., of the National Cancer Institute at the National Institute of Environmental Health Sciences, and colleagues compared oxidative DNA damage in methylation-competent cell lines vs. methylation-deficient cell lines exposed to arsenic.

Exposure of the methylation-competent , but not methylation-deficient cells, was followed by a sharp rise in oxidative DNA damage. Subsequent to the peak of oxidative , methylation-competent cells, more rapidly than methylation-deficient cells, acquired the in vitro characteristics of cancer cells.

Animals have been engineered not to biomethylate arsenic. "Although inorganic arsenicals have not yet been tested for carcinogenic effects in these genetically altered mice, this clearly should be a high priority," the authors write.

In an accompanying editorial, Michael F. Hughes, Ph.D., of the , in Research Triangle Park, N.C., reviews the history of research concerning arsenic methylation and its role in carcinogenesis. He notes that future investigations will need to determine whether arsenic-induced oxidative stress contributes to arsenic-induced toxicity and carcinogenesis by affecting cell signaling pathways and/or apoptosis.

Source: Journal of the National Cancer Institute (news : web)

Explore further: Researcher to cancer: 'Resistance will be futile'

add to favorites email to friend print save as pdf

Related Stories

Arsenic exposure could increase diabetes risk

Aug 19, 2008

Inorganic arsenic, commonly found in ground water in certain areas, may increase the risk of developing type 2 diabetes, according to a study by researchers at the Johns Hopkins Bloomberg School of Public Health. The study ...

DNA editing tool flips its target

Sep 03, 2008

Imagine having to copy an entire book by hand without missing a comma. Our cells face a similar task every time they divide. They must duplicate both their DNA and a subtle pattern of punctuation-like modifications on the ...

Work with fungus uncovering keys to DNA methylation

Dec 15, 2008

Researchers in a University of Oregon lab have shed more light on the mechanism that regulates DNA methylation, a fundamental biological process in which a methyl group is attached to DNA, the genetic material in cells of ...

Recommended for you

Mutations need help from aging tissue to cause leukemia

2 hours ago

Why are older people at higher risk for developing cancer? Prevailing opinion holds that, over time, your body's cells accumulate DNA damage and that eventually this damage catches up with the body in a way ...

Specific oxidation regulates cellular functions

7 hours ago

For a long time, hydrogen peroxide has been considered as a dangerous metabolite that can damage cells through oxidation. This, however, is not its only role in the cell. Scientists from the German Cancer Research Center ...

New disease mechanism discovered in lymphoma

7 hours ago

Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.