Wistar researchers show targeting 'normal' cells in tumors slows growth

Nov 16, 2009

Targeting the normal cells that surround cancer cells within and around a tumor is a strategy that could greatly increase the effectiveness of traditional anti-cancer treatments, say researchers at The Wistar Institute.

In the published online November 16, they demonstrate the critical role for fibroblast activation protein (FAP), expressed by one type of these so-called "stromal" cells, in promoting tumor growth in mice. Genetically deleting or therapeutically targeting FAP significantly reduced the rate of tumor growth in mice by interrupting or blocking important signaling pathways and biological processes required for tumor growth, the Wistar team found.

"It's like taking away the soil from a seed that wants to grow," says senior author Ellen Puré, Ph.D., a professor in the Molecular and Cellular Oncogenesis Program at Wistar. "These results provide a proof-of-principle that targeting and modifying a tumor's microenvironment may be an effective approach to treating solid tumors."

Tumors are a complex mix of neoplastic and normal cells - inflammatory and immune cells, endothelial cells, fibroblasts, pericytes, and others, collectively known as stromal cells. In addition, a web-like extracellular matrix is created by the stromal cells, and its structure is important for supporting and nurturing tumor growth through molecular signaling pathways.

The Wistar team focused on fibroblasts and pericytes. In addition to synthesizing components of the extracellular matrix, fibroblasts associated with tumors also express FAP, a particular protease that cuts up other proteins while pericytes are important to the function of the new blood vessels that develop in tumors. FAP is expressed in 90 percent of all human epithelial (solid) cancers, and FAP expression is recognized as a marker for and is thought to play a role in cancer growth, but the mechanisms through which this occurs had been previously unknown.

"Our data clearly demonstrate that FAP indeed promotes the growth of as well as lung cancer in animal models, and provide insight into how FAP works," says Puré. To explore how FAP promotes tumor growth, lead author Angélica Santos, Ph.D., and colleagues took two approaches - genetic deletion and pharmacologic targeting of FAP to determine the effects of deactivating FAP in mouse models of lung and colon cancer.

First, they examined the genetic deletion of FAP. In collaboration with Wistar assistant professor and co-author Joseph Kissil, Ph.D., they mated mice engineered to spontaneously develop lung cancer when their K-Ras gene is activated with mice whose FAP gene had been deleted to develop a new strain of mice with a genetic deletion of FAP and expressing an activated K-Ras gene.

The Wistar team found that lung tumor growth was substantially inhibited in these mice. In another experiment the investigators transplanted colon cancer cells into FAP-deficient mice and saw a similarly marked inhibition of tumor growth.

"We found that FAP inactivation disrupts the organization of the collagen fibers which are a key component of matrix and that could be critical for many things, including cell to cell communication, cell-matrix interactions and development of new blood vessels to feed the tumors," Puré says. "The organization or architecture of the matrix is important to supporting both stromal and cancer cells within a tumor. If stromal cells depend on this matrix for structural support and to communicate with the cancer, they can't do that properly if it is drastically modified as we observed in the absence of FAP activity. "

To explore the potential for a therapeutic approach, the investigators used a novel peptide agent, PT630, to shut down FAP activation in the lung and colon cancer mice. Again, they found a significant reduction in by inhibiting the enzymatic activity of FAP with this candidate drug agent.

"This proof of concept is the first step toward the clinic," Puré says. "We need more drugs that target the non-cancer cells in tumors, which can then be combined with specific chemotherapies and biologic drugs to attack both the tumor and its supporting cells."

One of the benefits of such a strategy, Puré adds, is that a limited number of agents would likely be required to treat many different cancers, because stromal cells tend to have common properties and share expression of the FAP in most tumor types. Comparatively, targeted therapies designed for specific tumor types - such as breast or colon - will likely require a wide variety of different drugs.

The only agents currently used to treat cancer by targeting the tumor microenvironment are anti-angiogenesis drugs, like Avastin, which disrupt blood vessel formation to tumors.

Source: The Wistar Institute

Explore further: Generation of tanners see spike in deadly melanoma

add to favorites email to friend print save as pdf

Related Stories

Researchers discover new enzyme in cancer growth

Dec 03, 2008

While studying the mechanics of blood clots, researchers at the University of Oklahoma Health Sciences Center discovered a new enzyme that not only affects the blood, but seems to play a primary role in how cancer tumors ...

New cancer gene found

May 08, 2008

Researchers at the OU Cancer Institute have identified a new gene that causes cancer. The ground-breaking research appears in Nature’s cancer journal Oncogene.

Recommended for you

Generation of tanners see spike in deadly melanoma

9 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

9 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

22 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments : 0