1930s drug slows tumor growth

Nov 06, 2009

Drugs sometimes have beneficial side effects. A glaucoma treatment causes luscious eyelashes. A blood pressure drug also aids those with a rare genetic disease. The newest surprise discovered by researchers at the Johns Hopkins University School of Medicine is a gonorrhea medication that might help battle cancer.

"Often times we are surprised that a drug known to do something else has another hidden property," says Jun Liu, Ph.D., a professor of pharmacology and molecular sciences at Johns Hopkins and author on the study published Oct. 1 in the .

In this case, the surprise is a big one. The drug, acriflavine, used in the 1930s for treating gonorrhea, has turned out to have the previously unknown ability to halt the growth of new blood vessels. Preliminary tests showed that mice engineered to develop cancer had no tumor growth if treated with daily injections of acriflavine.

"As rapidly divide, they consume considerable amounts of oxygen," says Gregg Semenza, M.D., Ph.D., the C. Michael Armstrong Professor of Pediatrics and director of the vascular program at the Johns Hopkins Institute for Cell Engineering. "To continue growing, a tumor must create new blood vessels to deliver oxygen to the tumor cells."

Acriflavine stops by inhibiting the function of the protein hypoxia-inducible factor (HIF)-1, which was discovered by Semenza's team in 1992. When HIF-1 senses that the surrounding environment is low in oxygen, it turns on genes necessary for building new vessels. Though essential for normal tissue growth and wound healing, HIF-1 is also turned on by cancers to obtain the oxygen they need to survive. Most importantly, in order for HIF-1 to work, two subunits must bind together like puzzle pieces.

Most drugs are unable to prevent because the drug molecules can be much smaller than the proteins they interact with. A medicine must hit just the right spot, a critical domain or pocket on the surface of one protein to stop it from binding to another protein. Even though drugs that stop binding are uncommon, they are such an effective means to stop protein function that Semenza decided to look for one that might block HIF-1. To do that, he turned to the Johns Hopkins Drug Library, a collection of FDA- and internationally approved compounds in that was assembled by Liu.

To visualize protein binding, scientists engineered a cell line so that when the HIF-1 subunits came together, they would cause the cell to light up like a firefly. They then tested each of the more than 3,000 drugs in the drug library in hopes of finding one that would turn out the light. Acriflavine did, andfurther studies confirmed that it was binding directly to HIF-1.

"Mechanistically, this is the first drug of its kind," says Liu. "It is acting in a way that is never seen for this family of proteins."

Liu hopes that acriflavine can one day be incorporated into chemotherapy cocktails, one drug among many that help fight cancer.

Hopkins is seeking even more new uses for old drugs. So far, drugs in the library have been screened for use against malaria, tuberculosis, HIV and the Ebola virus. In the future, Liu expects even more researchers to take advantage of the library, which is continuing to grow as more drugs are added to the collection.

"In the public domain, Hopkins has the largest drug library," says Liu. "The more drugs you have, the more possibilities, the higher the chance you rediscover something that will help."

Source: Johns Hopkins Medical Institutions

Explore further: Early bottlenecks in developing biopharmaceutical products delay commercialization

add to favorites email to friend print save as pdf

Related Stories

New hope for cancer comes straight from the heart

Jan 05, 2009

Digitalis-based drugs like digoxin have been used for centuries to treat patients with irregular heart rhythms and heart failure and are still in use today. In the Dec. 16 issue of the Proceedings of the National Academy of ...

Antifungal drug stops blood vessel growth

Apr 27, 2007

Researchers at Johns Hopkins have discovered to their surprise that a drug commonly used to treat toenail fungus can also block angiogenesis, the growth of new blood vessels commonly seen in cancers. The drug, itraconazole, ...

How vitamin C stops the big 'C'

Sep 10, 2007

Nearly 30 years after Nobel laureate Linus Pauling famously and controversially suggested that vitamin C supplements can prevent cancer, a team of Johns Hopkins scientists have shown that in mice at least, vitamin C - and ...

Recommended for you

Boxed warnings are common in novel therapeutics

Aug 19, 2014

(HealthDay)—Boxed warnings are common on recent drug approvals, and many occur years after approval, according to a research letter published online Aug. 15 in JAMA Internal Medicine.

AstraZeneca says DOJ closes probe into drug trial

Aug 19, 2014

British drugmaker AstraZeneca says the U.S. Department of Justice has closed its investigation into a clinical trial of the company's blood thinner Brilinta, and plans no further action.

Perampanel for epilepsy: Still no proof of added benefit

Aug 19, 2014

The drug perampanel (trade name Fycompa) has been approved since July 2012 as adjunctive ("add-on") therapy for adults and children aged 12 years and older with epileptic fits (seizures). In a new early benefit assessment ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Nov 07, 2009
More information would be useful here, was it just one type of cancer?, were the cancers in the mice still present but halted or were they actually gone?. What were the side effects?. That said, this seems like a tremendous result, the fruit of some shrewd scientific work.