Widely used virus assay shown unreliable when compared to other methods

Oct 21, 2009

In the course of doing research on the mosquito-borne pathogens chikungunya virus (CHIKV) and o' nyong-nyong virus (ONNV), Virginia Tech researchers have discovered an inconvenient truth about an assay, strand-specific quantitative real-time PCR (ssqPCR), increasingly being used to detect and measure replicating viral RNA in infected cells and tissues. The method most labs are using for ssqPCR is unreliable.

The research appears in the Wednesday, October 14, 2009, issue of , in the article, "Accurate Strand-Specific Quantification of Viral RNA," by Nicole E. Plaskon of Richmond Va., a Master of Science in life sciences candidate in the College of Agriculture and Life Sciences, and entomology Assistant Professors Zach N. Adelman and Kevin M. Myles, all with the Fralin Life Science Institute..

CHIKV has sickened millions of people in India and Africa in the last five years - 1.3 million in India alone. ONNV has also previously caused large outbreaks of human disease with cases numbering in the millions. In studying of the mosquito, the Virginia Tech researchers developed a novel assay that detects and measures anti-genomic copies of the . This differs from traditional assays that simply measure viral nucleic acids associated with infection, regardless of origin.

"The application of real-time PCR to the detection and quantification of specific strands of viral RNA is becoming an increasingly important tool in the study of RNA viruses. As a result, multiple types of ssqPCR assays have been described and are in widespread use. However, no study has yet determined if the accuracy with which the different types of assays detect and quantify specific strands of are equivalent. It turns out they are not, and the most frequently used method is the most error prone," said Myles.

"A less frequently used ssqPCR assay turned out to be more accurate," said Adelman.

"The fact that many labs have been using assays prone to error may have led to some wrong conclusions," Adelman said. "Using the more accurate assays will lead to more accurate conclusions and better science."

Although Myles and Adelman developed their assays for CHIK and ONNV, the results should help improve the design of ssqPCR assays for the study of other RNA viruses as well.

More information: The PLOS One (Public Library of Science) article is available on line at dx.plos.org/10.1371/journal.pone.0007468

Source: Virginia Tech (news : web)

Explore further: Muscular dystrophy: Repair the muscles, not the genetic defect

add to favorites email to friend print save as pdf

Related Stories

Researchers create first chikungunya animal model

Feb 19, 2008

Researchers have developed the first animal model of the infection caused by chikungunya virus (CHIKV), an emerging arbovirus associated with large-scale epidemics that hit the Indian Ocean (especially the French Island of ...

Recommended for you

Cellular protein may be key to longevity

9 hours ago

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

12 hours ago

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

12 hours ago

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments : 0