Team reveals molecular mechanism underlying a form of diabetes

Sep 08, 2009

By investigating a rare and severe form of diabetes in children, University of Iowa researchers have discovered a new molecular mechanism that regulates specialized pancreatic cells and insulin secretion. The mechanism involves a protein called ankyrin, which UI researchers previously linked to potentially fatal human heart arrhythmias.

The findings, which appear this week in the Early Edition of the , may help identify new molecular targets for treating both rare and common forms of diabetes and hyperinsulinemia.

The Centers for Disease Control and Prevention estimates that 23.6 million people have diabetes in the United States. The condition doubles the risk of death and includes complications such as heart disease, stroke, eye and kidney problems, and peripheral vascular disease.

The University of Iowa team, working with researchers at Washington University in St. Louis, used animal and cellular models to focus on a linked with permanent neonatal . Children with this genetic form of diabetes have symptoms by age 6 months and require lifelong dependence on insulin to maintain proper .

The team discovered that the specific human gene mutation disrupts the ability of the protein ankyrin to regulate a key protein complex known as the KATP channel.

"We have known for some time that human mutations in the KATP channel complex may cause diabetes or hyperinsulinemia," said Faith Kline, Ph.D., the study's lead author and postdoctoral fellow in internal medicine in the University of Iowa Carver College of Medicine. "Now we know something about how this specific KATP channel mutation results in disease.

"The KATP channel essentially functions as a gatekeeper for by pancreatic beta cells. Without proper regulation by this gatekeeper, the pancreatic beta cells are unable to efficiently regulate insulin secretion."

In a healthy individual, pancreatic beta cells respond to changes in blood glucose levels by secreting the appropriate amount of insulin. Beta cell dysfunction may result in abnormal blood glucose regulation and severe diabetes.

"A key finding in this study was identifying the ankyrin protein in the pancreatic beta cell, which is a type of excitable cell. Ankyrins also play critical roles for ion channel regulation in other excitable cells, such as neurons and heart cells called cardiomyocytes," said the paper's senior author, Peter Mohler, Ph.D., University of Iowa associate professor of internal medicine and a Pew Scholar.

Specifically, the team found that the gene mutation prevents most KATP channels from binding with ankyrin, which typically acts as a cellular chaperone. This failure prevents the KATP channels from reaching their normal destination in the cell membrane.

"Ankyrin proteins are like cellular taxi-cabs that carry passenger channels to the cell membrane. In the case of this KATP gene mutation, the ankyrin and channels cannot interact properly, and so the channels basically 'miss their ride' and do not get to the desired location," Mohler said.

The team also found that the few mutant KATP channels that do reach the pancreatic cell membrane do not respond to alterations in cellular metabolism. As a result, the pancreatic beta cells do not release insulin appropriately.

"This is another exciting example of how understanding the basis of rare disease has provided unexpected and fascinating insight into the molecular pathways that govern human physiology," Mohler said.

Source: University of Iowa (news : web)

Explore further: Reconstruction of a patterned piece of spinal cord in 3D culture

add to favorites email to friend print save as pdf

Related Stories

Study provides insight on a common heart rhythm disorder

Oct 07, 2008

University of Iowa researchers and colleagues in France have identified a gene variant that causes a potentially fatal human heart rhythm disorder called sinus node disease. Also known as "sick sinus syndrome," the disease ...

Fat cells send message that aids insulin secretion

Nov 06, 2007

The body's fat cells help the pancreas do its job of secreting insulin, according to research at Washington University School of Medicine in St. Louis. This previously unrecognized process ultimately could lead to new methods ...

Mutations in the insulin gene can cause neonatal diabetes

Sep 10, 2007

Mutations in the insulin gene can cause permanent neonatal diabetes, an unusual form of diabetes that affects very young children and results in lifelong dependence on insulin injections, report researchers from the University ...

Stem cell breakthrough offers diabetes hope

Apr 03, 2008

Scientists have discovered a new technique for turning embryonic stem cells into insulin-producing pancreatic tissue in what could prove a significant breakthrough in the quest to find new treatments for diabetes.

Recommended for you

Heart's own immune cells can help it heal

1 hour ago

(Medical Xpress)—The heart holds its own pool of immune cells capable of helping it heal after injury, according to new research in mice at Washington University School of Medicine in St. Louis.

Making lab-grown tissues stronger

1 hour ago

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments.

The 'ultimate' stem cell

2 hours ago

In the earliest moments of a mammal's life, the developing ball of cells formed shortly after fertilisation 'does as mother says' – it follows a course that has been pre-programmed in the egg by the mother. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.