Gene mutation responsible for premature skin aging disease identified

Aug 31, 2009

In the new print issue of Nature Genetics, scientists in Singapore and Germany report that mutations in the PYCR1 gene cause the rare genetic condition that results in premature skin aging and that is known as "wrinkly skin syndrome."

Their findings not only suggest that increasing levels of the PYCR1 protein could reverse conditions that cause fast aging and wrinkly skin but also provide insight into how some unexpected genes help maintain youthful skin.

Bruno Reversade, Ph.D. of Singapore's Institute of Medical Biology (IMB) led the international research team that involved collaborations with over 15 hospitals and research centres in 13 countries.

Using bioinformatics tools, Dr. Reversade and his team analyzed samples collected worldwide from patients who, at a young age, displayed signs of premature aging. They identified the PYCR1 gene on chromosome 17 of these patients to be defective and found specific mutations in the gene that led to conditions often seen in elderly people, such as loose skin, loss of , hip dislocation and cataract.

They also determined that skin and bone were the two tissues most severely affected in patients with wrinkly skin syndrome. Since skin and bone contain high levels of the PYCR1 protein under normal circumstances, developing therapies that could increase the activity of the PYCR1 protein could possibly reverse the process of aging in affected individuals or slow it down in normal people.

The scientists found that the PYCR1 protein is located in mitochondria, the cell's "power house," providing energy for the cell's consumption. In their experiments, they observed changes in mitochondrial morphology and cell death in the connective tissues of individuals with PYCR1 mutations.

To determine the effects of reduced levels of PYCR1 protein, the scientists studied the growth of frog and fish models in which the PYCR1 gene had been experimentally shut off. They found that the mitochondrial function in the animal models' skin was altered, and there was also an increased occurrence of cell death.

"Our findings confirm the significance of mitochondrial function in the aging process," said Dr. Reversade. "They also unexpectedly highlight the importance of metabolism as PYCR1 is important in the synthesis of proline, a common amino acid involved in metabolism. Age-defying and anti-wrinkling treatments for common disorders related to ageing may also benefit from sustaining proline metabolism."

"We are excited by these findings of Bruno and colleagues, which open up new possibilities in the field of aging and skin research," added Birgit Lane, Ph.D., a biologist and Executive Director of IMB, one of the research institutes sponsored by Singapore's A*STAR (Agency for Science, Technology and Research).

"The study is a great example of scientific synergy - when clinicians and scientists from around the world come together to share their specialist skills and knowledge, they can discover new insights into complex medical conditions," said Dr. Lane. "Rare genetic disorders often provide surprising revelations. Pooling resources and targeting research to find new ways of combating disease - and benefiting people faster - is exactly what we try to do at IMB."

More information: "Mutations in PYCR1 cause cutis laxa with progeroid features," published in the 1 Sept. 2009 print issue of .

Source: Agency for Science, Technology and Research (A*STAR)

Explore further: A link between DNA transcription and disease-causing expansions

add to favorites email to friend print save as pdf

Related Stories

Another new wrinkle in treating skin aging

Jun 05, 2008

Topical applications of a naturally occurring fat molecule have the potential to slow down skin aging, whether through natural causes or damage, researchers report.

Skin ages differently for men, women

Oct 06, 2006

Researchers at Germany's Friedrich Schiller University, using an experimental measuring device, suggest that men's and women's skin age at different rates.

'Master regulator' of skin formation discovered

Mar 24, 2009

Researchers at Oregon State University have found one gene in the human body that appears to be a master regulator for skin development, in research that could help address everything from skin diseases such as eczema or ...

Recommended for you

Science of romantic relationships includes gene factor

Nov 23, 2014

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.