Scientists uncover immune system's role in bone loss

Aug 24, 2009

Got high cholesterol? You might want to consider a bone density test. A new UCLA study sheds light on the link between high cholesterol and osteoporosis and identifies a new way that the body's immune cells play a role in bone loss.

Published Aug. 20 in the journal , the research could lead to new immune-based approaches for treating osteoporosis. Affecting 10 million Americans, the disease causes fragile bones and increases the risk of fractures, resulting in lost independence and mobility.

Scientists have long recognized the relationship between high cholesterol and osteoporosis, but pinpointing the exact mechanism connecting the two has proved elusive.

"We've known that osteoporosis patients have higher cholesterol levels, more severe clogging of the heart arteries and increased risk of stroke. We also knew that drugs that lower cholesterol reduce bone fractures, too," explained Rita Effros, professor of pathology at the David Geffen School of Medicine at UCLA. "What we didn't understand was why."

Effros suspected a clue to the mystery involved oxidation -- cell and tissue damage resulting from exposure of the fatty acids in cholesterol to molecules known as .

In the study, UCLA researchers focused on low-density lipoprotein (LDL), the so-called "bad" cholesterol. They examined how high levels of oxidized LDL affect bone and whether a type of immune cell called a T cell plays a role in the process.

Using blood samples from healthy human volunteers, the team isolated the participants' T cells and cultured them in a dish.

Half of the T cells were combined with normal LDL- the rest was combined with oxidized LDL. The scientists stimulated half of the T cells to mimic an immune response and left the other half alone.

"Lo and behold, both the resting and the activated T cells started churning out a chemical that stimulates cells whose sole purpose is to destroy bone," said Effros. Called RANKL, the chemical is involved in immune response and bone physiology.

To investigate further how the immune system participates in , the scientists repeated the experiment in a mouse model.

Half the animals were fed a high-fat diet starting at one month of age, while the control group ate a normal diet. At 11 months, the mice on the high-fat diet showed elevated and thinner bones.

When Effros and her colleagues tested the T cells of the mice on the high-fat diet, they discovered that the cells acted differently than those of the mice on the normal diet.

The T cells switched on the gene that produces RANKL. The chemical also appeared in the animals' bloodstream, suggesting that the cellular activity contributed to their bone loss.

"It's normal for our T cells to produce small amounts of RANKL during an immune response," explained Effros. "But when RANKL is manufactured for long periods or at the wrong time, it results in excessive bone damage."

"That's exactly what happened to the mice on the high-fat diet," she said. "The animals' increased their levels of oxidized LDL, which told the to keep generating RANKL. This discovery revealed to us how the immune system might play an entirely new role in bone loss."

The next step will be exploring methods to control T cell response to oxidized LDL in an effort to develop immune-based approaches to prevent or slow bone loss, Effros says.

Source: University of California - Los Angeles

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

add to favorites email to friend print save as pdf

Related Stories

New blood test reveals risk for metabolic syndrome

May 20, 2008

University of Minnesota researchers have discovered that people with high oxidation levels of the low-density lipoprotein (LDL) particle that carries cholesterol throughout the blood are much more likely to develop metabolic ...

Role of a key enzyme in reducing heart disease identified

Oct 24, 2007

Virginia Commonwealth University researchers have identified the role of a key enzyme called CEH in reducing heart disease, paving the way for new target therapies to reduce plaques in the arteries and perhaps ...

Study links air pollution to clogged arteries

Jul 26, 2007

Got high cholesterol? You might want to stay away from air pollution. That’s the message of a new UCLA study linking diesel exhaust to atherosclerosis, or hardening of the arteries, which significantly increases one’s ...

Recommended for you

New pain relief targets discovered

9 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

10 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

13 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...