Researchers identify how stressed fat tissue malfunctions

Jul 14, 2009

Ben-Gurion University of the Negev (BGU) researchers, in a collaboration with colleagues from the University of Leipzig, Germany, have identified a signaling pathway that is operational in intra-abdominal fat, the fat depot that is most strongly tied to obesity-related morbidity.

The paper was just published in the Endocrine Society's the ( J. Clin. Endocrinol. Metab. 2009; 94:2507-251)

"Fat tissue in obesity is dysfunctional, yet, the processes that cause fat tissue to malfunction are poorly understood -- specifically, it is unknown how 'translate' stresses in obesity into dysfunction," said Dr. Assaf Rudich, senior lecturer from the Department of Clinical Biochemistry at Ben-Gurion University.

Fat tissue is no longer considered simply a storage place for excess calories, but in fact is an active tissue that secretes multiple compounds, thereby communicating with other tissues, including the liver, muscles, pancreas and the brain. Normal communication is necessary for optimal metabolism and weight regulation. However, in obesity, fat (adipose) tissue becomes dysfunctional, and mis-communicates with the other tissues. This places fat tissue at a central junction in mechanisms leading to common diseases attributed to obesity, like type 2 diabetes and cardiovascular diseases.

Fat tissue dysfunction is believed to be caused by obesity-induced fat tissue stress: Cells over-grow as they store increasing amounts of fat. This excessive cell growth may cause decreased oxygen delivery into the tissue; individual cells may die (at least in mouse models), and fat tissue inflammation ensues. Also, excess nutrients (glucose, fatty acids) can also result in increased metabolic demands, and this in itself can cause cellular stress.

The BGU and Leipzig teams established a setup for collecting fat tissue samples from people undergoing abdominal surgery. The team identified a signaling pathway that is operational in intra-abdominal fat, the fat depot that is most strongly tied to obesity-related morbidity.

The degree of activation of a signaling pathway from these individuals was compared with those of leaner people, those with obesity predominantly characterized by accumulation of "peripheral" fat, and those with obesity with predominant accumulation of fat within the abdominal cavity.

They discovered that the signaling pathway was more active depending on the amount of fat accumulation in the abdomen, and that it correlated with multiple biochemical markers for increased cardio-metabolic risk. Moreover, the expression of one of the upstream signaling components, a protein called ASK1, predicts whole-body insulin resistance (an endocrine abnormality that is strongly tied to diabetes and ), independent of other traditional risk factors.

Researchers also demonstrated that although non-fat cells within adipose tissue express most of this protein in lean persons, the adipocytes themselves increase its expression by more than four-fold in abdominally-obese persons.

"The importance of this study is not only in contributing to the understanding of adipose tissue dysfunction in obesity, but as a consequence, may provide important leads for novel ways to prevent the dangerous consequences, such as type 2 diabetes, of intra-abdominal fat accumulation," states Dr. Iris Shai, a BGU researcher at the S. Daniel Abraham International Center for Health and Nutrition and Soroka University Medical Center in Beer-Sheva, Israel.

Source: American Associates, Ben-Gurion University of the Negev (news : web)

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Fat chance: Brown vs. white fat cell specification

May 14, 2008

In the May 15th issue of G&D, Dr. Bruce Spiegelman (Dana Farber Cancer Institute) and colleagues elucidate the molecular pathway that induces cells to become energy-burning brown fat cells as opposed to energy-storing white ...

Control of blood vessels a possible weapon against obesity

Jan 07, 2009

Mice exposed to low temperatures develop more blood vessels in their adipose tissue and metabolise body fat more quickly, according to a new study from Karolinska Institutet. Scientists now hope to learn how to control blood ...

Fat transplantation can have metabolic benefits

May 06, 2008

When transplanted deep into the abdomen, fat taken from just under the skin comes with metabolic benefits, or at least it does in mice, reveals a new study in the May issue of Cell Metabolism.

Your belly fat could be making you hungrier

Apr 16, 2008

The extra fat we carry around our middle could be making us hungrier, so we eat more, which in turn leads to even more belly fat. Dr. Yaiping Yang and his colleagues at the Lawson Health Research Institute affiliated with ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0