Study provides greater understanding of lyme disease-causing bacteria

Jun 30, 2009

Lyme disease in the U.S. is caused by the tick-borne bacteria Borrelia burgdorferi and usually begins with a skin lesion, after which the bacteria spread throughout the body to the nervous system, heart or joints. About 60 percent of untreated individuals develop arthritis, which affects the knees in particular. Lyme disease usually responds well to antibiotic therapy, but in rare cases arthritis can persist for months or years after treatment, a rare condition known as antibiotic-refractory Lyme arthritis. Joint fluid usually tests negative for B burgdorferi after treatment, indicating that joint inflammation may persist even after the bacteria has been eradicated.

Two genetic marker systems are used to correlate the variation of this with clinical outcomes: OspC typing divides B burgdorferi strains into 21 types, while the ribosomal RNA intergenic spacer type (RST) system divides them into just three groups, with certain RST groups corresponding uniquely to specific OspC types.

A new study led by Allen Steere of Massachusetts General Hospital and Harvard Medical School analyzed joint fluid samples from 124 patients with Lyme who were seen over a 30-year period. It identified B. burgdorferi strains in the joints of patients with Lyme arthritis and found that the genotype frequencies in joints reflected those in skin lesions. However, RST1 strains were the most frequent in patients with antibiotic-refractory arthritis. The study was published in the July issue of Arthritis & Rheumatism (http://www3.interscience.wiley.com/journal/76509746/home).

The researchers were able to identify 10 of the 16 B burgdorferi OspC types found in the northeastern U.S. and all three RST types in the joint fluid of patients with Lyme arthritis. Although it was only possible to determine B burgdorferi phenotypes in 40 percent of the samples, the researchers feel confident that the distribution reflects what has been observed in the skin because they were able to identify numerous OspC and RST types, and the distribution was similar to what has been reported in previous studies of skin lesions.

One might presume that the association of RST1 strains with antibiotic-refractory arthritis may reflect a greater ability of these strains to survive in the joint despite antibiotic therapy. However, this seems not to be the case. Rather, RST1 strains seem to induce a more marked immune response, which may set the stage for joint inflammation that persists after antibiotic therapy in genetically susceptible individuals.

"We hypothesize that RST1 strains are more virulent, leading to larger numbers of organisms in blood, and more inflammation in joints," the authors state. They conclude that the results of this study "add to the emerging literature concerning the differential pathogenicity of strains of B burgdorferi."

More information: "Analysis of Borrelia burgdorferi Genotypes in Patients with Lyme Arthritis," Kathryn L. Jones, Gail A. McHugh, Lisa J. Glickstein, Allen C. Steere, Arthritis & Rheumatism, July 2009.

Source: Wiley (news : web)

Explore further: Dangers of desert dust: New diagnostic tool for valley fever

add to favorites email to friend print save as pdf

Related Stories

Researchers identify cell group key to Lyme disease arthritis

Dec 03, 2008

A research team led by the La Jolla Institute for Allergy & Immunology and Albany Medical College has illuminated the important role of natural killer (NK) T cells in Lyme disease, demonstrating that the once little understood ...

Lingering bacteria don't indicate chronic Lyme disease

Apr 01, 2008

The bacteria that cause Lyme disease, the most common tick-borne illness in the United States, can linger in mouse tissues long after a full round of antibiotic treatment is completed, report researchers from the University ...

Lingering Bacteria Don't Indicate Chronic Lyme Disease

Mar 31, 2008

The bacteria that cause Lyme disease, the most common tick-borne illness in the United States, can linger in mouse tissues long after a full round of antibiotic treatment is completed, report researchers from the University ...

Researchers track Lyme disease spirochetes

Jun 20, 2008

Microbiologists at the University of Calgary have demonstrated the first direct visualization of the dissemination of Borrelia burgdorferi, the bacterium that causes Lyme disease. This real-time, three-dimensional look at ...

Researchers to study lyme-like illness in Texas

Aug 15, 2008

Tao Lin, D.V.M., and Steven J. Norris, Ph.D., both with the Department of Pathology and Laboratory Medicine at The University of Texas Medical School at Houston, have been named grant recipients of the Norman Hackerman Advanced ...

Recommended for you

Meningitis diagnosis prompted W.Va. clinic probe

21 hours ago

A health official says an investigation that found syringes were being reused at a West Virginia pain management clinic was triggered by patient who developed bacterial meningitis.

California firm issues nationwide fruit recall

Jul 22, 2014

A Central California company has issued a voluntary nationwide recall of specific lots of its fresh peaches, plums, nectarines and pluots over concerns of possible listeria contamination.

User comments : 0