Vitamin A derivative provides clues to better breast cancer drugs

Jun 25, 2009
This is an artistic depiction of the proposed competitive binding of Retinoic Acid Receptors (blue) and Estrogen Receptor alpha (purple) to a genomic target site to achieve the antagonistic transcriptional effects indicated by the yin and yang symbol. Credit: Artwork by Janet Iwasa for the University of Chicago.

Retinoic acid, a derivative of vitamin A, could lead researchers to a new set of drug targets for treating breast cancer, researchers from the University of Chicago report in the June 25, 2009, issue of the journal Cell.

The most common forms of breast cancer are fueled by the female hormone estrogen. By comparing the effects of estrogen and retinoic acid on the entire genome, the researchers found that they have a "yin-yang" effect. They alter the expression of many of the same genes, with estrogen tipping the scales towards cell proliferation and retinoic acid restoring the balance by inhibiting cellular growth.

This balanced control of gene expression regulates fundamental cellular processes, say the authors. When it is dysregulated, it can lead to cancer.

"Understanding all the components of this process could be used against breast cancer care in three ways," said study leader, Kevin White, PhD, professor of and director of the Institute for Genomics and System Biology at the University of Chicago. "It suggests new ways to think about preventing the disease in those at high risk. It offers molecular tools that could provide a more precise diagnosis and predict outcomes. It could also be used to enhance current therapies, making existing drugs, such as tamoxifen, that selectively block estrogen's effects even more powerful, or even to develop new anti-cancer drugs."

White's team studies the effects of nuclear receptors, a class of proteins found within cells that control the response to various hormones. When a hormone enters a cell and connects with its receptor, that receptor alters the pattern of expression of specific genes--often hundreds or more.

For this study, White and colleagues Sujun Hua and Ralf Kittler focused on the retinoic acid receptors. Retinoic acid, known for its anticancer effects and already in use to treat a rare form of leukemia, has also been associated with anti-proliferative changes in breast cancer cells.

So the team combined two laboratory techniques--a process known as "ChIP-chip analysis" that blends chromatin immunoprecipitation (ChIP), to see where the retinoic acid receptors bound to the genome, with micro-array gene-chip analysis, to measure expression levels of specific genes.

The combination enabled them to map out all the genetic effects of retinoic acid and its receptors in a cell line derived from patients with breast cancers that were fueled by estrogen.

They found that 39 percent of the genomic regions bound by estrogen receptor alpha overlapped with those bound by retinoic acid. They also found that the binding of estrogen and retinoic acids receptors to target sites were often mutually exclusive. This means the two hormones compete to activate or repress many of the same genes.

The two signaling pathways were mainly antagonistic. Estrogen increased expression of 139 genes that retinoic repressed. Retinoic acid activated 185 genes that retinoic acid repressed. For about 140 genes, estrogen and retinoic acid had the same effect.

"Collectively, note the authors, "these findings indicate an extensive crosstalk" between the effects of estrogen and retinoic acid. Despite their opposing effects, certain versions of the estrogen and retinoic acid receptors actually activate each other. This provides "an additional level of control," say the authors, "for achieving a balanced regulation of gene expression."

This competition between the two signals also provides a new tool to predict outcomes. The researchers compared the effects of retinoic acid on tissues from 295 breast cancer patients against the results from their initial study using a typical breast cancer cell line. They found that the more responsive a tumor was to retinoic acid, the better the odds of long-term relapse-free survival.

Some of the genes that respond to retinoic acid were expressed even in difficult-to-treat tumors, such as those that do not have estrogen receptors or the molecule targeted by the drug Herceptin, the so-called double- or triple-negative breast cancers. "Some of these genes may provide new drug targets," White said.

Although retinoic acid is approved for treatment of leukemia, it can be quite toxic and patients can develop resistance to the drug. This study suggests a long series of downstream targets that are activated by the RA receptor.

"The goal would be to develop drugs that could activate these cancer-inhibiting targets," said White. "Retinoic acid itself is probably not the solution because of its side effects and metabolic byproducts," He cautioned, "but our results provide a molecular justification for finding ways to overcome its limitations in the clinic."

"This work reveals important insights on the interplay between vitamin A and estrogen action," said Myles Brown, MD, professor of medicine at Harvard Medical School and the Dana Farber Cancer Institute. "These insights will hopefully lead to new approaches for the prevention and treatment of the most common form of ."

Source: University of Chicago Medical Center

Explore further: Dual role: Key cell division proteins also power up mitochondria

add to favorites email to friend print save as pdf

Related Stories

Study shows how embryos regulate vitamin A derivatives

Nov 20, 2007

Human embryos that get too much or too little retinoic acid, a derivative of Vitamin A, can develop into babies with birth defects. New research at UC Irvine shows for the first time how embryonic cells may regulate levels ...

A new way to treat colon cancer?

Oct 10, 2006

Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments – a molecule that is implicated in 85 percent of colon cancer cases.

Embryology study offers clues to birth defects (w/Video)

Jun 09, 2009

Gregg Duester, Ph.D., professor of developmental biology at Burnham Institute for Medical Research (Burnham), along with Xianling Zhao, Ph.D., and colleagues, have clarified the role that retinoic acid plays in limb development. ...

Recommended for you

Proper stem cell function requires hydrogen sulfide

24 minutes ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

Bionic ankle 'emulates nature'

5 hours ago

These days, Hugh Herr, an associate professor of media arts and sciences at MIT, gets about 100 emails daily from people across the world interested in his bionic limbs.

Firm targets 3D printing synthetic tissues, organs

7 hours ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

User comments : 0

More news stories

Classifying cognitive styles across disciplines

Educators have tried to boost learning by focusing on differences in learning styles. Management consultants tout the impact that different decision-making styles have on productivity. Various fields have ...

Internet use may cut retirees' depression

Spending time online has the potential to ward off depression among retirees, particularly among those who live alone, according to research published online in The Journals of Gerontology, Series B: Psychological Sciences an ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...