Study finds new insight on therapy for a devastating parasitic disease

Jun 23, 2009

University of Minnesota Medical School researchers have discovered an important new insight into how a commonly prescribed drug may work to treat those infected by a parasitic flatworm.

The Schistosomasis parasite infects about 200 million people in tropical areas worldwide and is endemic in more than 70 countries, where people become infected simply by bathing, drinking, or cooking water contaminated with the flatworm. Although not immediately deadly, left untreated, the disease can permanently damage the lungs, kidney, liver, and intestines and ultimately lead to death.

A drug called praziquantel has been used as the main treatment for Schistosomiasis for several decades, but surprisingly, scientists have never understood how this drug works to kill the parasitic worms that cause this disease. Deciphering how this drug works is important because scientists could design new drugs that work in similar ways should the parasites develop resistance to praziquantel.

While working in a different species of flatworm widely used to study the basic principles of regenerative biology, researchers in the Pharmacology Department discovered that praziquantel caused a simple, striking effect: the drug subverts normal regeneration to produce two-headed organisms. This simple observation was then used to screen for genes required to control this effect, leading to the identification of molecules that control the effects of praziquantel within a flatworm model.

"Our discovery of this new biological activity of praziquantel provides a foundation for defining the relevant in vivo targets of a very important clinical drug," said Jonathan Marchant, M.A. Ph.D., principal investigator of the study. "Using drugs to make organisms grow two brains may seem bizarre, but the knowledge we gained illustrates the importance of basic scientific research."

The study is published in the June 23 issue of .

"Discoveries by researchers working in diverse animal models not linked with disease frequently provide insight into long-standing clinical problems," Marchant said. "Basic science feeds into the therapeutic pipeline in unpredictable ways and it is important to foster such diversity."

Source: University of Minnesota (news : web)

Explore further: Where Ebola battles are won

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Where Ebola battles are won

8 hours ago

(HealthDay)—Four hospitals that are home to advanced biocontainment facilities have become America's ground zero in the treatment of Ebola patients.

Depression tied to worse lumbar spine surgery outcomes

11 hours ago

(HealthDay)—Depressive symptoms are associated with poorer long-term outcome in patients undergoing surgery for lumbar spinal stenosis (LSS), according to research published in the Oct. 1 issue of The Sp ...

Ebola death toll edging to 4,900 mark: WHO

11 hours ago

The death toll in the world's worst-ever Ebola outbreak has edged closer to 4,900, while almost 10,000 people have now been infected, new figures from the World Health Organization showed Wednesday.

US to track everyone coming from Ebola nations

12 hours ago

U.S. authorities said Wednesday that everyone traveling into the U.S. from Ebola-stricken nations will be monitored for symptoms for 21 days. That includes returning American aid workers, federal health employees ...

User comments : 0