Wistar Institute team finds key target of aging regulator

Jun 10, 2009

Researchers at The Wistar Institute have defined a key target of an evolutionarily conserved protein that regulates the process of aging. The study, published in Nature, provides fundamental knowledge about key mechanisms of aging that could point toward new anti-aging strategies and cancer therapies.

Scientists have long known that a class of proteins called sirtuins promotes fitness and longevity in most organisms ranging from single-celled yeast to mammals. At the cellular level, sirtuins protect genome integrity, enhance resistance to adverse stresses, and antagonize senescence. However, the underlying molecular mechanisms have remained poorly understood. The team, led by senior author Shelley Berger, Ph.D., Hilary Koprowski Professor at The Wistar Institute, demonstrated for the first time a molecular target for a member of this class, Sir2, in regulation of aging in yeast . Sir2 removes an acetyl group attached to a specific site (lysine at position 16 or K16) on histone H4—histones are proteins that package and organize the long strands of DNA within the nucleus and also are central regulators in turning genes on and off. The study reveals that removal of this acetyl group by Sir2 near the chromosome ends—the telomeres—is important for yeast cells to maintain the ability to replicate. Researchers found that Sir2 levels decline as cells , and there is a concomitant accumulation of the acetylation mark along with disrupted histone organization at telomeres.

Deacetylation of H4K16 by Sir2 and consequent telomere stability play a major role in maintaining long lifespan in yeast. Since sirtuins deacetylate many different proteins, these results clarify a key role of Sir2 protein in control of lifespan.

"Some modifications on histones, like this acetylation on histone H4 lysine 16, are persistent and are maintained through generations of cell divisions. This DNA-independent inheritance is called epigenetics," Berger says. "Characteristic epigenetic features have been discovered for various developmental processes in recent years. Understanding epigenetic changes associated with aging is a hugely exciting direction in aging research. It will provide insights and ideas not only for new therapies to regulate cells that have lost control of proliferation, such as 'immortal' cells found in cancers, but also for new strategies to maintain health and fitness."

"We plan to continue to search for new targets of Sir2 and other aging regulators," says lead author Weiwei Dang, Ph.D., a postdoctoral scientist working with Berger. "We are designing unbiased screens for other aging targets and mechanisms in chromatin. Using yeast as our aging model enables us to do many discovery screens that are impossible with other, more complex organisms. Yet it is remarkable that many of these chromatin mechanisms associated with yeast could turn out to be relevant even for aging human cells."

Source: The Wistar Institute

Explore further: NIH issues finalized policy on genomic data sharing

add to favorites email to friend print save as pdf

Related Stories

Vitamin extends life in yeast, researchers find

May 03, 2007

Imagine taking a vitamin for longevity! Not yet, but a Dartmouth discovery that a cousin of niacin prolongs lifespan in yeast brings the tantalizing possibility a step closer.

Starve a yeast, sweeten its lifespan

Mar 24, 2009

Johns Hopkins researchers have discovered a new energy-making biochemical twist in determining the lifespan of yeast cells, one so valuable to longevity that it is likely to also functions in humans.

Recommended for you

Mutation disables innate immune system

1 hour ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

19 hours ago

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Grun4it
not rated yet Jun 10, 2009
I can see the bogus TV ads now for homeopathic (not FDA confirmed) snake oil claiming to stop aging. Act now and we will throw in a Snuggy or a shamwow!