2 signals -- from within and out of cell -- specify motor neuron differentiation

Jun 10, 2009

Two signals - an external one from retinoic acid and an internal one from the transcription factor Neurogenin2 - cooperate to activate chromatin (the basic material of chromosomes) and help determine that certain nerve progenitor cells become motor neurons, said researchers from Baylor College of Medicine in a report in the current issue of the journal Neuron.

"This finding is important for many reasons. For example, as we understand more about what happens, the more likely we will be able to generate motor from different types of stem cells," said Dr. Soo-Kyung Lee (http://www.bcm.edu/db/db_fac-lees.html), assistant professor of molecular and human genetics and molecular and cellular biology at BCM. (A motor neuron conducts impulses from the spinal cord to a muscle fiber, controlling movement and other activities.) "It will also be useful as a tool for drug screening, allowing us to determine whether a drug is killing or enhancing the activity of motor neurons."

In a delicate series of experiments, she and her colleagues showed that a complex consisting of Neurogenin2 and the retinoic acid receptor, when bound to retinoic acid, recruit a particular enzyme (histone acetyltransferase CBP) to their complex. This causes a chemical reaction called acetylation of the histones (the spools around which DNA winds in the chromatin), stimulating the transcription of the gene into the protein for which it holds the .

"These changes lead to strong expression of the motor neuron genes in nerve progenitor cells, converting them to motor neurons," said Lee. "What is striking is that the retinoic acid receptor uses the Neurogenin2 site to bind to the DNA."

In mice that lack CBP, she said, there is marked reduction in motor neurons. The finding could play a role in unraveling the secrets of diseases such as the muscular dystrophies.

Source: Baylor College of Medicine (news : web)

Explore further: Platelets modulate clotting behavior by 'feeling' their surroundings

add to favorites email to friend print save as pdf

Related Stories

Mixing and matching genes to keep nerve cells straight

Jun 09, 2008

With fewer than 30,000 human genes with which to work, Nature has to mix and match to generate the myriad types of neurons or nerve cells needed to assemble the brain and nervous system. Keeping this involved process on the ...

The matchmaker that maintains neuronal balance

Mar 25, 2009

A protein identified by researchers at Baylor College of Medicine helps maintain a critical balance between two types of neurons, preventing motor dysfunction in mammals.

Finding clues for nerve cell repair

Jun 03, 2008

A new study at the Montreal Neurological Institute at McGill University identifies a key mechanism for the normal development of motor nerve cells (motor neurons) - cells that control muscles. This finding is crucial to understanding ...

Researchers generate functional neurons from somatic cells

Feb 24, 2009

In a new study, researchers were able to generate functionally mature motor neurons from induced pluripotent stem (iPS) cells, which are engineered from adult somatic cells and can differentiate into most other cell types. ...

Controlling embryonic fate by association

May 04, 2008

Association determines fate in embryonic stem cells, said Baylor College of Medicine researchers in a report that appears in the current issue of the journal Nature Cell Biology.

Recommended for you

A better way to track emerging cell therapies using MRIs

Sep 19, 2014

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

User comments : 0