Sprained ankle rehab complicated by delayed muscle response, study finds

May 13, 2009
BYU exercise science professor Ty Hopkins studies ankle injuries and why most people don't recover full stability. Credit: Mark Philbrick/BYU

Whether on the trail, at the gym, or even on the front-porch steps, what happens inside your ankle in the milliseconds following a single misstep could sentence you to a lifetime of ankle trouble.

And it's not just the ligaments left with lasting damage, finds Brigham Young University researcher Ty Hopkins and collaborators from the University of Michigan. Their new study points to a leg muscle whose speed and quality of protective response is permanently compromised after a sprain.

"The lateral muscles of the leg are key to injury," said Hopkins, a co-author on the study in the current issue of the American Journal of Sports Medicine. "They are key because they resist the movement that is involved in injury itself and position the foot during movement."

The new study provides the latest clue as to why ankle instability persists in most cases long after the initial sprain.

Hopkins and his team recruited both weak- and strong-ankled people to walk down a runway custom built with eight trap doors. With legs cleanly shaven, each participant was hooked up to sensory equipment, launched down the runway, and told to match their steps to the beat of a metronome. As they strode to the other end, one of the trap doors would suddenly invert 30 degrees outward, tweaking their ankle just enough to trigger the series of muscle reactions in question.

While it sounds (and looks) like walking the plank, Hopkins is quick to point out that everyone walked away from the tests uninjured.

The participants' bravery gave researchers data on the speed and quality of three protective muscle contractions signaled from different parts of the : the first from receptors within the leg muscle, the second from relays within the spinal cord and the third from the brain itself. Participants with a history of weak ankles had a significant delay for the first muscle response compared to a control group with no history of sprains.

The researchers found the muscles responded within 55 milliseconds in the control group. It took more time in the group with a history of ankle trouble - as much as 90 milliseconds. The delay sounds small but in some cases could mean the difference between a painful ankle sprain and going merrily on your way.

The strength of the muscle response was also diminished in participants with prior ankle injury. Researchers believe prior injuries leave the muscle receptors with less sensitivity, impairing their ability to react as quickly or strongly as the situation may call for.

"If there are muscles that prevent or reduce the extent of injury and they don't work, you're in big trouble," Hopkins said. "We have got to somehow turn those muscles on."

The researchers focused on a particular muscle - about as thick as an index finger - called the peroneus longus. When contracted, this moves the foot in the opposite direction of an ankle injury.

"The peroneus longus by itself probably isn't a very good protector simply because of its size, even if it contracted really well," Hopkins said. "We are working on other projects now to look at the system of muscles involved with stabilizing the ankle."

Hopkins and his team of researchers are continuing their search to find out why instability persists. With current research, as stated in the paper, a person should remain active to help maintain dynamic stability in their ankle. Hopkins believes that with more data they will be able to develop treatments and exercises to overcome functional ankle instability.

"Once we find out exactly why ankle instability persists, then it could be easy to correct," Hopkins said.

Source: Brigham Young University (news : web)

Explore further: Key element of CPR missing from guidelines

add to favorites email to friend print save as pdf

Related Stories

The spring in your step is more than just a good mood

Apr 23, 2008

Scientists using a bionic boot found that during walking, the ankle does about three times the work for the same amount of energy compared to isolated muscles---in other words, the spring in your step is very real and helps ...

Chronic ankle pain may be more than just a sprain

May 01, 2009

Ankle sprains are a common injury after a fall, sudden twist or blow to the ankle joint. Approximately 40 percent of those who suffer an ankle sprain will experience chronic ankle pain, even after being treated ...

Robotic exoskeleton replaces muscle work

Feb 08, 2007

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

Toad research could leapfrog to new muscle model

Jun 02, 2008

A toad sits at a pond's edge eyeing a cricket on a blade of grass. In the blink of an eye, the toad snares the insect with its tongue. This deceptively simple, remarkably fast feeding action offers a new look ...

Recommended for you

Key element of CPR missing from guidelines

13 hours ago

Removing the head tilt/chin lift component of rescue breaths from the latest cardiopulmonary resuscitation (CPR) guidelines could be a mistake, according to Queen's University professor Anthony Ho.

Burnout impacts transplant surgeons (w/ Video)

Jul 28, 2014

Despite saving thousands of lives yearly, nearly half of organ transplant surgeons report a low sense of personal accomplishment and 40% feel emotionally exhausted, according to a new national study on transplant surgeon ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Coach
not rated yet May 15, 2009
Surely some of the related problems are the fact that walking surfaces are generally flat and unyielding; the shoes we wear (with excessive %u201Ccomfort%u201D); and the mediocre way we walk %u2013 all of which attenuate reaction and destroy proper neuromuscular feedback and development of dynamic stability.

%u201CParticipants with a history of weak ankles had a significant delay for the first muscle response compared to a control group with no history of sprains.%u201D Isn%u2019t it as likely that the reverse is true? Participants with a significant delay for the first muscle response will have weak ankles and be more likely to suffer sprains?