Impaired brain plasticity linked to Angelman syndrome learning deficits

May 10, 2009

How might disruption of a single gene in the brain cause the severe cognitive deficits associated with Angelman syndrome, a neurogenetic disorder? Researchers at the University of North Carolina at Chapel Hill School of Medicine and Duke University now believe they have the answer: impaired brain plasticity.

"When we have experiences, connections between brain cells are modified so that we can learn," said Benjamin Philpot, Ph.D., professor of cell and molecular physiology at UNC and senior author of the study published online May 10 in . "By strengthening and weakening appropriate connections between brain cells, a process termed 'synaptic plasticity', we are able to constantly learn and adapt to an ever-changing environment."

Angelman syndrome occurs in one in 15,000 live births. The most common of the syndrome is the lack of expression of the gene UBE3A on . The syndrome often is misdiagnosed as cerebral palsy or autism. Characteristics of the syndrome include intellectual and developmental delay, severe mental retardation lack of speech (minimal or no use of words), seizures, sleep disturbance, hand flapping and motor and balance disorders.

Philpot and his co-authors studied a mouse model of Angelman syndrome. In these mice, the gene UBE3A is functionally deficient. The study found that brain cells in the mice lacked the ability to appropriately strengthen or weaken their connections in the neocortex, a region of the brain that is important for cognitive abilities.

"If brain cells were unable to modify their connections with new experiences, then we would have difficulty learning," said Michael Ehlers, M.D., Ph.D., professor of neurobiology at Duke and co-senior author of the study. "We have found that a specific form of brain plasticity is severely impaired in a mouse model of Angelman syndrome and this prevents from encoding information provided by sensory experiences. In addition, an exciting possibility is that the defect we have found may be a more general feature of other disorders of brain development including autism."

The inability of brain cells to encode information from experiences in the Angelman syndrome model suggests that this is the basis for the learning difficulties in these patients.

"It is difficult to study how experiences lead to changes in the brain in models of mental retardation," said Koji Yashiro, PhD, a former graduate student in Philpot's lab and lead author of the study, now a scientist with Urogenix, Inc. in Research Triangle Park, North Carolina. "Instead of studying a complex learning model, we studied how connections between brain cells change in visual areas of mice exposed to light or kept in darkness. This approach revealed that brain cells in normal mice can modify their connections in response to changes in visual experiences, while the brain cells in Angelman syndrome model mice could not."

An unexpected finding was that the plasticity of the cellular connections could be restored in visual areas of the brain after brief periods of visual deprivation. Philpot said the observation that the brain defect could be reversed "is very encouraging, as it suggests that viable behavioral or pharmacological therapies are likely to exist."

"By showing that brain plasticity can be restored in Angelman syndrome model mice, our findings suggest that brain cells in Angelman syndrome patients maintain a latent ability to express plasticity. We are now collaborating to find a way to tap into this latent plasticity, as this could offer a treatment, or even a cure, for Angelman syndrome," said Philpot.

Philpot added, "This same experimental approach could also reveal how encode information from experiences in other related disorders, such as autism, and may provide a model to find cures for a variety of neurodevelopmental disorders."

Source: University of North Carolina School of Medicine

Explore further: Vacuum treatment may limit damage after traumatic brain injury

add to favorites email to friend print save as pdf

Related Stories

Model for angelman syndrome developed

Aug 14, 2008

A model for studying the genetics of Angelman syndrome, a neurological disorder that causes mental retardation and other symptoms in one out of 15,000 births, has been developed by biologists at The University of Texas at ...

Study finds first-ever genetic animal model of autism

Dec 09, 2007

By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to research presented at the ...

Recommended for you

Steering the filaments of the developing brain

42 minutes ago

During brain development, nerve fibers grow and extend to form brain circuits. This growth is guided by molecular cues (Fig. 1), but exactly how these cues guide axon extension has been unclear. Takuro Tojima ...

Do we really only use 10% of our brain?

1 hour ago

As the new film Lucy, starring Scarlett Johansson and Morgan Freeman is set to be released in the cinemas this week, I feel I should attempt to dispel the unfounded premise of the film – that we only use 10% of our brains ...

Birthday matters for wiring-up the brain's vision centers

22 hours ago

Researchers at the University of California, San Diego School of Medicine have evidence suggesting that neurons in the developing brains of mice are guided by a simple but elegant birth order rule that allows them to find ...

User comments : 0