Cell's split personality is a major discovery into neurological diseases

May 07, 2009

Researchers at the Université de Montreal (UdeM) and the Montreal Neurological Institute (MNI), McGill University have discovered that cells which normally support nerve cell (neuron) survival also play an active and major role in the death of neurons in the eye. The findings, published this week in The Journal of Neuroscience, may lead to more streamlined therapies for a variety of acute and chronic neurological disorders, including glaucoma and retinal artery occlusion.

In many neurodegenerative diseases, a main factor that kills neurons is excessive levels of glutamate, the most abundant excitatory in many regions of the (CNS). Diseases that occur as a result of high glutamate levels include hypoxic-ischemic brain injury (stroke), trauma, seizures, various forms of dementia and neurodegeneration. For years, the main explanation for the toxic effects of glutamate is that it overexcites neuronal cells via activation of glutamate receptors and thereby kills them.

"The most interesting aspect of our study and the reason we are so excited is that the pathway leading to glutamate-induced nerve cell death involves another vital player - namely, glial cells," says Dr. Adriana Di Polo, neuroscientist at the UdeM. "Through careful experimentation we now know that glutamate activates signaling pathways in glial cells that then lead to neuronal death."

Glial cells are the most abundant cell type in the nervous system and are traditionally thought of as 'partner' cells to nerve cells providing support, nutrients and an optimal environment. However, this study indicates that glial cells also have a more sinister side that allows them to induce or exacerbate neuronal death in pathological conditions.

"Neuronal cell death induced by glutamate is a key step in a large number of injury and disease settings and this study is important because it provides a road-map for the cellular and molecular events that allow this to occur" says Dr. Philip Barker, neuroscientist at the MNI, "The fact that specific signaling events in glial cells are important for inducing neuronal cell death is surprising and suggests new therapeutic targets for conditions that involve excitotoxicity."

The findings of the MNI and UdeM study represent a paradigm shift from the main model of excitotoxicity that has been in place for many years. Until now, the central idea has been that glutamate, which is released upon injury, binds to and activates the glutamate receptors on neurons triggering massive calcium entry and cell death. However, clinical trials targeting glutamate receptors have been disappointing suggesting that these receptors play only a minor role in triggering neuronal death.

The study, supported by the Canadian Institutes of Health Research, focused on nerve cells in the retina which convey information from the retina to the brain along the optic nerve, and are the primary link between the retina and the brain. The death of these retinal neurons from excess glutamate causes vision loss in various neurodegenerative disorders including optic neuropathies.

By disrupting signaling events in surrounding glial cells, the researchers were able to protect the majority of these neurons, confirming that glial cell events play a key role in death triggered by glutamate. This new understanding of the excitotoxic cascade of nerve cell death provides clear targets for successful therapeutic intervention of a wide-range of neurological and neurodegenerative diseases.

Source: McGill University (news : web)

Explore further: Study finds potential genetic link between epilepsy and neurodegenerative disorders

add to favorites email to friend print save as pdf

Related Stories

Matrix fragments trigger fatal excitement

Dec 29, 2008

Shredded extracellular matrix (ECM) is toxic to neurons. Chen et al. reveal a new mechanism for how ECM demolition causes brain damage. The study will appear in the December 29, 2008 issue of The Journal of ...

Neurotransmitter defect may trigger autoimmune disease

Oct 06, 2008

A potentially blinding neurological disorder, often confused with multiple sclerosis (MS), has now become a little less mysterious. A new study by researchers at the Mayo Clinic in Rochester, Minnesota, may have uncovered ...

Decoy pill saves brain cells

Jan 31, 2007

Tricking a key enzyme can soothe over-excited receptors in the brain, say neuroscientists, calling this a possible strategy against stroke, Alzheimer's and other neurodegenerative diseases.

Recommended for you

Molecular basis of age-related memory loss explained

8 hours ago

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

8 hours ago

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

Study examines blood markers, survival in patients with ALS

Jul 21, 2014

The blood biomarkers serum albumin and creatinine appear to be associated with survival in patients with amyotrophic lateral sclerosis (ALS) and may help define prognosis in patients after they are diagnosed with the fatal ...

User comments : 0