Chemopreventive isothiocyanates selectively depletes mutant p53 in tumor cells

Apr 20, 2009

Researchers at Lombardi Comprehensive Cancer Center at Georgetown University Medical Center have demonstrated that naturally-occurring compounds can selectively deplete mutant p53 and restore "wild type" function to p53 in a variety of tumor cells.

Mutations in the p53 - which is involved in apoptosis and DNA repair - occur in about half of all human tumors. p53 often acts as a checkpoint preventing abnormal cells from continuing to grow and divide. However mutations in are one way that pre-cancerous cells overcome normal cellular controls and replicate without restraint.

This study demonstrates for the first time that phenethyl isothiocyante (PEITC), a naturally-occurring compound, can selectively deplete mutant p53. The authors also made an intriguing observation that the depletion of mutant p53 in human cancer cells is accompanied by restoration of the wild type p53. PEITC is a member of the isothiocyanate family compounds found in cruciferous vegetables, such as watercress, broccoli and cabbage. PEITC has been shown to have cancer preventive activity.

The researchers found that PEITC not only decreases the level of mutated p53 protein in tumor cells, but also restores the "wild type" or normal activity to mutated p53. The effect of this is that tumor cell lines with mutant p53 became more sensitive to PEITC-induced cytotoxicity than tumor cells with wild type p53, suggesting that the normal p53 checkpoint control pathways have been restored in the mutant p53-expressing tumor cells. This novel finding suggests that the PEITC and other compounds in the isothiocyante family could play important role in both prevention and treatment of human cancers with mutant p53.

Source: Georgetown University Medical Center (news : web)

Explore further: Quarter of prostate cancer patients may abandon 'watchful waiting' approach

add to favorites email to friend print save as pdf

Related Stories

Reactivated gene shrinks tumors

Jan 24, 2007

Many cancers arise due to defects in genes that normally suppress tumor growth. Now, for the first time, MIT researchers have shown that re-activating one of those genes in mice can cause tumors to shrink or ...

Preventing cancer without killing cells

Mar 30, 2007

Inducing senescence in aged cells may be sufficient to guard against spontaneous cancer development, according to a paper published online this week in EMBO reports. It was previously unknown whether cellular senescence or ...

Recommended for you

Unraveling the 'black ribbon' around lung cancer

7 hours ago

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?

User comments : 0

More news stories

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...