Researchers use brain interface to post to Twitter (w/Video)

Apr 20, 2009

(PhysOrg.com) -- In early April, Adam Wilson posted a status update on the social networking Web site Twitter -- just by thinking about it.

Just 23 characters long, his message, "using EEG to send tweet," demonstrates a natural, manageable way in which "locked-in" patients can couple brain-computer interface technologies with modern communication tools.

A University of Wisconsin-Madison biomedical engineering doctoral student, Wilson is among a growing group of researchers worldwide who aim to perfect a communication system for users whose bodies do not work, but whose brains function normally. Among those are people who have amyotrophic lateral sclerosis (ALS), brain-stem stroke or high spinal cord injury.

This video is not supported by your browser at this time.
video of Wilson using the brain-computer interface to post to Twitter

Some brain-computer interface systems employ an electrode-studded cap wired to a computer. The electrodes detect in the brain — essentially, thoughts — and translate them into physical actions, such as a cursor motion on a computer screen. "We started thinking that moving a cursor on a screen is a good scientific exercise," says Justin Williams, a UW-Madison assistant professor of biomedical engineering and Wilson's adviser. "But when we talk to people who have locked-in syndrome or a spinal-cord injury, their No. 1 concern is communication."

In collaboration with research scientist Gerwin Schalk and colleagues at the Wadsworth Center in Albany, N.Y., Williams and Wilson began developing a simple, elegant communication interface based on related to changes in an object on screen.

The interface consists, essentially, of a keyboard displayed on a computer screen. "The way this works is that all the letters come up, and each one of them flashes individually," says Williams. "And what your brain does is, if you're looking at the 'R' on the screen and all the other letters are flashing, nothing happens. But when the 'R' flashes, your brain says, 'Hey, wait a minute. Something's different about what I was just paying attention to.' And you see a momentary change in brain activity."

Wilson, who used the interface to post the update, likens it to texting on a cell phone. "You have to press a button four times to get the character you want," he says of texting. "So this is kind of a slow process at first."

However, as with texting, users improve as they practice using the interface. "I've seen people do up to eight characters per minute," says Wilson.

A free service, Twitter has been called a "micro-blogging" tool. User updates, called tweets, have a 140-character limit — a manageable message length that fits locked-in users' capabilities, says Williams.

Tweets are displayed on the user's profile page and delivered to other Twitter users who have signed up to receive them. "So someone could simply tell family and friends how they're feeling today," says Williams. "People at the other end can be following their thread and never know that the person is disabled. That would really be an enabling type of communication means for those people, and I think it would make them feel, in the online world, that they're not that much different from everybody else. That's why we did these things."

Schalk agrees. "This is one of the first — and perhaps most useful — integrations of brain-computer interface techniques with Internet technologies to date," he says.

While widespread implementation of brain-computer interface technologies is still years down the road, Wadsworth Center researchers, as well as those at the University of Tübingen in Germany, are starting in-home trials of the equipment. Wilson, who will finish his Ph.D. soon and begin postdoctoral research at Wadsworth, plans to include Twitter in the trials.

Williams hopes the Twitter application is the nudge researchers need to refine development of the in-home technology. "A lot of the things that we've been doing are more scientific exercises," he says. "This is one of the first examples where we've found something that would be immediately useful to a much larger community of people with neurological deficits."

Follow PhysOrg.com on Twitter!

Source: University of Wisconsin-Madison (news : web)

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Thinking about moving? Let brain waves do the walking

Dec 05, 2004

Using brain waves to control screen cursor movements, rather than moving a mouse by hand, seems like science fiction! Yet such direct control over our environment is an integral part of the development work being undertaken ...

Brain-Computer Interface

Mar 02, 2005

A research group led by Academy Professor Mikko Sams is developing a brain-computer interface, a device that transforms electrical or magnetic brain signals into commands a computer can understand. Equipment of this kind ...

Mind over matter: Monkey feeds itself using its brain

May 28, 2008

A monkey has successfully fed itself with fluid, well-controlled movements of a human-like robotic arm by using only signals from its brain, researchers from the University of Pittsburgh School of Medicine report in the journal ...

Conceptualizing a cyborg

Jan 18, 2007

Investigators at the University of Pennsylvania School of Medicine describe the basis for developing a biological interface that could link a patient's nervous system to a thought-driven artificial limb. Their ...

Scientists to study synthetic telepathy

Aug 13, 2008

A team of UC Irvine scientists has been awarded a $4 million grant from the U.S. Army Research Office to study the neuroscientific and signal-processing foundations of synthetic telepathy.

Scientists Discover What You Are Thinking

Mar 17, 2005

By decoding signals coming from neurons, scientists at the California Institute of Technology have confirmed that an area of the brain known as the ventrolateral prefrontal cortex (vPF) is involved in the planning stages ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Doschx
not rated yet Apr 20, 2009
Congratulations, by taking the blue pill you have been reinserted into the matrix. Have a nice day.
Szkeptik
not rated yet Apr 20, 2009
Not bad. The real breakthrough though would be to have a program that can translate thoughts into text directly. Writing an R when I'm thinking R.
karligula
not rated yet Apr 21, 2009
You may be aware of this already but there is an alternative text entry system called Dasher which can be seen here:

http://www.infere.../dasher/

I'm pretty sure moving the mouse pointer could be 'thought' controlled in some way?

More news stories

Less-schooled whites lose longevity, study finds

Barbara Gentry slowly shifts her heavy frame out of a chair and uses a walker to move the dozen feet to a chair not far from the pool table at the Buford Senior Center. Her hair is white and a cough sometimes interrupts her ...

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.