Researchers uncover signaling pathway that regulates movement of blood-forming stem cells

Mar 25, 2009

Researchers at the Keck School of Medicine of the University of Southern California (USC) have identified a signaling pathway that helps regulate the movement of blood-forming stem cells in the body—a finding that provides important new insight into how stem cells move around the body and which may lead to improvements in the efficiency of bone marrow transplants.

The study will appear in the journal Nature, and is available online March 25th.

"By identifying the key mechanism by which these home and engraft to the bone marrow, it may be possible to pharmacologically treat the cells to activate this and thus increase the effectiveness of bone marrow transplants," says lead author Gregor Adams, Ph.D., assistant professor of cell and at the Keck School and a researcher at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

are blood-forming cells that circulate through the body shifting back and forth between the bloodstream and bone marrow, Adams explains. When patients receive a , healthy blood stem cells are injected into their veins. Unless those stem cells can find their way into a specific site known as the stem cell niche, they cannot develop properly to replenish the white cells, red cells and platelets in the patient's blood.

The mechanisms that guide the cells during this migration have not been well understood. However, in this study the researchers found that blood-forming stem cells that lacked a specific signaling molecule, called GalphaS, did not home to or engraft in the bone marrow of adult mice, Adams says.

"Here we show that the GalphaS pathway is a critical intracellular pathway involved in this process," he says. "Currently, large numbers of blood-forming stem cells are required in bone marrow transplantation due to the limited efficiency of the homing process. This study opens up the possibility of treating bone marrow cells with GalphaS pathway activators as a means to increase the effectiveness of bone marrow transplants."

Improving the efficiency with which stem cells colonize the bone marrow following transplantation could have far-reaching implications for disease treatment, says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

"For example, such a discovery might enhance the utility of umbilical cord blood, which contains only limited numbers of stem cells, for the treatment of cancer and blood disorders in children and adults," Pera says.

Source: University of Southern California (news : web)

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Molecule dictates how stem cells travel

Jan 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Protein key to control, growth of blood cells

Aug 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.