Neuroscientists identify physiological link between trial and error and learning

Mar 25, 2009

Learning through trial and error often requires subjects to establish new physiological links by using information about trial outcome to strengthen correct responses or modify incorrect responses. New findings, which appear in the latest issue of the journal Neuron, establish a physiological measure linking trial outcome and learning.

"Our results open a new door to understanding the important role of in the process," said Wendy Suzuki, a professor at New York University's Center for Neural Science and a co-author of the study.

The study's other co-authors included researchers from France's National Center for Scientific Research, the Harvard Medical School, and the University of California, Davis. The study was supported by a grant from the National Institutes of Health.

For the past half century, scientists have examined the role of the brain's medial temporal lobe in learning. Previous scholarship has determined that a critical function of the medial temporal lobe is to successfully acquire new information about facts and events ("declarative learning") by making new associations between initially unrelated items ("").

The researchers on the study published in Neuron sought to understand if there is a link between how the brain functions in associative learning and in processing information about trial outcome. Specifically, they were interested in cell activity in a portion of medial temporal lobe called the hippocampus. Earlier research had found that hippocampal are involved in associative learning, such as matching names with faces.

To investigate this process, the researchers had primates play a computer in which the subjects matched particular object-place combinations with . When they associated the correct object-place association with the correct response, the primates were rewarded with their favorite fruit juice. During these sessions, the researchers recorded the activity of the primates' hippocampal neurons.

The results showed that a surprisingly large proportion of recorded hippocampal cells—50 percent—differentiated between correct and error responses. This finding was striking since previous learning or memory studies in the hippocampus showed lower proportions of active cells in task-related activities. Moreover, their findings showed many of these cells also came to respond more strongly to particular object-place combinations as learning improved. This suggests that the cells' ability to make distinctions between correct and incorrect trial outcomes may influence new learning by changing a cell's sensitivity to the stimuli being learned.

Source: New York University (news : web)

Explore further: Study links enzyme to autistic behaviors

add to favorites email to friend print save as pdf

Related Stories

Neurons change in learning-memory process

Nov 01, 2005

University of Texas-Austin neuroscientists say they have observed large-scale changes across neuron dendrites during learning and memory processing.

Recommended for you

Study links enzyme to autistic behaviors

17 hours ago

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

A new cause of mental disease?

22 hours ago

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

Molecular basis of age-related memory loss explained

Jul 22, 2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

Jul 22, 2014

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

User comments : 0