Immune reaction to metal debris leads to early failure of joint implants

Mar 04, 2009

Researchers at Rush University Medical Center have identified a key immunological defense reaction to the metals in joint replacement devices, leading to loosening of the components and early failure.

The study, funded by the National Institutes of Health, won the annual William H. Harris, MD Award for scientific merit from the Orthopaedic Research Society. Currently posted online, it is expected to be published in the June issue of the Journal of Orthopaedic Research.

Over 600,000 total joint replacements are performed in the United States each year. The vast majority are successful and last well over 10 years. But in up to 10 percent of patients, the metal components loosen, requiring the patient to undergo a second surgery.

The loosening is often caused by localized inflammation, an immune reaction to tiny particles of debris from the components themselves as they rub against one another. No infection is involved.

"As soon as joint replacement devices are implanted, they begin to corrode and wear away, releasing particles and ions that ultimately signal danger to the body's immune system," said Nadim Hallab, associate professor at Rush University Medical Center and the study author.

There are two different types of inflammatory pathways: one that reacts to foreign bodies like bacteria and viruses, which cause an infection, and another that reacts to "sterile" or non-living danger signals, including ultraviolet light and oxidative stress.

This is the first time that researchers have shown that debris and ions from implants trigger this danger-signaling pathway.

According to Hallab, when specialized cells of the immune system, called macrophages, encounter this metallic debris, they "engulf it in sacs called lysosomes and try to get rid of the debris by digesting it with enzymes." But the particles damage the lysosomes, Hallab said, "and the cells start screaming 'danger.'"

These danger signals are detected by large complexes of proteins, called inflammasomes. The inflammasomes mobilize, precipitating a chain of chemical events that cause inflammation.

The researchers are hopeful that identification of this molecular pathway that triggers inflammation without infection could lead to new and specific therapeutic strategies to avoid the early failure of joint replacements.

Other researchers at Rush involved in the study were Marco Caicedo, Ronak Desai, Kyron McAllister, Dr. Anand Reddy, and Dr. Joshua Jacobs.

Source: Rush University Medical Center

Explore further: Experts call for higher exam pass marks to close performance gap between international and UK medical graduates

add to favorites email to friend print save as pdf

Related Stories

Death rates higher for poor black Americans

Feb 25, 2011

In 2000, a black, working-aged resident of a poor neighborhood was significantly more likely to die than a white American — a situation that essentially remained unchanged from 20 years earlier, according ...

Recommended for you

What are the chances that your dad isn't your dad?

Apr 16, 2014

How confident are you that the man you call dad is really your biological father? If you believe some of the most commonly-quoted figures, you could be forgiven for not being very confident at all. But how ...

New technology that is revealing the science of chewing

Apr 15, 2014

CSIRO's 3D mastication modelling, demonstrated for the first time in Melbourne today, is starting to provide researchers with new understanding of how to reduce salt, sugar and fat in food products, as well ...

After skin cancer, removable model replaces real ear

Apr 11, 2014

(HealthDay)—During his 10-year struggle with basal cell carcinoma, Henry Fiorentini emerged minus his right ear, and minus the hearing that goes with it. The good news: Today, the 56-year-old IT programmer ...

User comments : 0

More news stories

Suddenly health insurance is not for sale

(HealthDay)— Darlene Tucker, an independent insurance broker in Scotts Hill, Tenn., says health insurers in her area aren't selling policies year-round anymore.

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...