Predicting risk of stroke from one's genetic blueprint

Feb 25, 2009

A new statistical model could be used to predict an individual's lifetime risk of stroke, finds a study from the Children's Hospital Informatics Program (CHIP). Using genetic information from 569 hospital patients, the researchers showed that their predictive model could estimate an individual's overall risk of cardioembolic stroke -- the most common form of stroke -- with 86 percent accuracy. The findings are reported in the March issue of Stroke.

"For complex diseases like stroke, it's not just a single mutation that will kill you," explains CHIP researcher Marco Ramoni, PhD, the study's senior author, who is also an Associate Professor at Harvard Medical School. "More likely it is an interaction of many factors."

Ramoni, in collaboration with Karen Furie, MD, the director of the stroke unit at Massachusetts General Hospital (MGH), and Rachel Ramoni, DMD, ScD, of the Harvard School of Dental Medicine, identified 569 patients that had presented to MGH's emergency department and outpatient neurology clinics between 2002 and 2005 with symptoms of suspected stroke. They collected genetic information from the 146 patients with confirmed cardioembolic stroke, and 423 controls who were followed and found not to have stroke, and looked for 1,313 genetic variants (called single nucleotide polymorphisms or SNPs) known to correlate with stroke. The SNPs that each patient had were then entered into the model -- known as a Bayesian network — which not only identified the genetic variants that correlated with stroke, but also determined how these factors interplayed and the strength of these interactions.

"The model looks for factors, combines them and finds out which are the best predictive factors," explains Ramoni. "It's never one factor at a time, it's always more than one factor. What this technology allows you to do is to generate a network of factors that contribute to stroke."

The researchers found that the model was able to predict an individual's risk of cardioembolic stroke with an accuracy of 86 percent. Ultimately, Ramoni envisions doctors using it as a diagnostic tool: a patient's genetic information would simply be entered into the model, which would correlate and analyze the data and output an overall probability of stroke, based on the stroke-related SNPs in the patient's genome. "It sounds like magic," says Ramoni. "But it's just a piece of technology. It gives hope that we will be able to predict early on whether someone is at risk of getting stroke, and allow you to convince them to make life changes."

"The next step is to get more SNPs," Ramoni adds. "These analyses looked at only 1,313 out of 3.3 million known SNPs. Even a million SNPs would cover the vast majority of the genome. We would get much better predictions."

Ramoni also says that by identifying all the genetic variants that modulate the risk of stroke, it could provide insight into its mechanisms and provide targets for future drugs. He is currently refining the model and believes that this technology could be used to predict inherited risk of many other conditions.

Source: Children's Hospital Boston

Explore further: Changes in scores of genes contribute to autism risk

add to favorites email to friend print save as pdf

Related Stories

Two-lock box delivers cancer therapy

May 06, 2014

Rice University scientists have designed a tunable virus that works like a safe deposit box. It takes two keys to open it and release its therapeutic cargo.

Recommended for you

Changes in scores of genes contribute to autism risk

Oct 29, 2014

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.