Brain mechanism recruited to reduce noise during challenging tasks

Feb 25, 2009

New research reveals a sophisticated brain mechanism that is critical for filtering out irrelevant signals during demanding cognitive tasks. The study, published by Cell Press in the February 26 issue of the journal Neuron, also provides some insight into how disruption of key inhibitory pathways may contribute to schizophrenia.

"The ability to keep track of information and one's actions from moment to moment is necessary to accomplish even the simple tasks of everyday life," explains senior study author, Dr. Helen Barbas from Boston University and School of Medicine. "Equally important is the ability to focus on relevant information and ignore noise."

Dr. Barbas and colleague, Dr. Maria Medalla, were interested in examining the synaptic mechanisms for selection and suppression of signals involved in working memory. They focused on the fine synaptic interactions of pathways with excitatory and inhibitory neurons in brain areas involved in attention.

"The primate dorsolateral prefrontal cortex (DLPFC) and anterior cingulated cortex (ACC) are brain regions that focus attention on relevant signals and suppress noise in cognitive tasks. However, their synaptic communication and unique roles in cognitive control are largely unknown," explains Dr. Barbas.

The researchers found that a pathway linking two related prefrontal areas within DLPFC and a pathway from the functionally distinct ACC to DLPFC similarly innervated excitatory neurons associated with paying attention to relevant stimuli. Interestingly, large nerve fiber endings from ACC contacted selectively inhibitory neurons that help suppress "noisy" excitatory neurons nearby.

These observations suggest that ACC has a greater impact in reducing noise in dorsolateral areas during challenging cognitive tasks involving conflict, error, or reversing decisions. These mechanisms are often disrupted in schizophrenia, and previous functional imaging studies by others have shown that schizophrenia is associated with reduced activity in ACC.

The authors conclude that ACC pathways may help reduce noise by stimulating inhibitory neurons in DLPFC. "The present data provide a circuit mechanism to suggest that pathology in the output neurons of ACC in schizophrenia might reduce excitatory drive to inhibitory neurons of dorsolateral prefrontal cortices, perturbing the delicate balance of excitation and inhibition," offers Dr. Barbas.

Source: Cell Press

Explore further: Educating on sickle cell risk

add to favorites email to friend print save as pdf

Related Stories

Mysterious glowworm found in Peruvian rainforest

2 hours ago

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

Recommended for you

Educating on sickle cell risk

12 minutes ago

Members of the public in sub-Saharan Africa who are carriers of the hereditary disease sickle cell disease must be educated aggressively through public health campaigns to raise awareness of the risks of parenting offspring ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

menkaur
not rated yet Feb 26, 2009
hm....
i always wonderd if the brain evolved to be able to use natural noise in it's computations

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.