Brain mechanism recruited to reduce noise during challenging tasks

Feb 25, 2009

New research reveals a sophisticated brain mechanism that is critical for filtering out irrelevant signals during demanding cognitive tasks. The study, published by Cell Press in the February 26 issue of the journal Neuron, also provides some insight into how disruption of key inhibitory pathways may contribute to schizophrenia.

"The ability to keep track of information and one's actions from moment to moment is necessary to accomplish even the simple tasks of everyday life," explains senior study author, Dr. Helen Barbas from Boston University and School of Medicine. "Equally important is the ability to focus on relevant information and ignore noise."

Dr. Barbas and colleague, Dr. Maria Medalla, were interested in examining the synaptic mechanisms for selection and suppression of signals involved in working memory. They focused on the fine synaptic interactions of pathways with excitatory and inhibitory neurons in brain areas involved in attention.

"The primate dorsolateral prefrontal cortex (DLPFC) and anterior cingulated cortex (ACC) are brain regions that focus attention on relevant signals and suppress noise in cognitive tasks. However, their synaptic communication and unique roles in cognitive control are largely unknown," explains Dr. Barbas.

The researchers found that a pathway linking two related prefrontal areas within DLPFC and a pathway from the functionally distinct ACC to DLPFC similarly innervated excitatory neurons associated with paying attention to relevant stimuli. Interestingly, large nerve fiber endings from ACC contacted selectively inhibitory neurons that help suppress "noisy" excitatory neurons nearby.

These observations suggest that ACC has a greater impact in reducing noise in dorsolateral areas during challenging cognitive tasks involving conflict, error, or reversing decisions. These mechanisms are often disrupted in schizophrenia, and previous functional imaging studies by others have shown that schizophrenia is associated with reduced activity in ACC.

The authors conclude that ACC pathways may help reduce noise by stimulating inhibitory neurons in DLPFC. "The present data provide a circuit mechanism to suggest that pathology in the output neurons of ACC in schizophrenia might reduce excitatory drive to inhibitory neurons of dorsolateral prefrontal cortices, perturbing the delicate balance of excitation and inhibition," offers Dr. Barbas.

Source: Cell Press

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Brain training reverses age-related cognitive decline: study

Jul 20, 2010

Specialized brain training targeted at the regions of a rat's brain that process sound reversed many aspects of normal, age-related cognitive decline and improved the health of the brain cells, according to a new study from ...

The APCs of nerve cell function

Jun 16, 2008

Rapid information processing in the nervous system requires synapses, specialized contact sites between nerve cells and their targets. One particular synapse type, cholinergic, uses the chemical transmitter acetylcholine ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

menkaur
not rated yet Feb 26, 2009
hm....
i always wonderd if the brain evolved to be able to use natural noise in it's computations