Dendritic cells as a new player in arteries and heart valves

Feb 17, 2009

(PhysOrg.com) -- In 1973, Ralph M. Steinman launched a new scientific discipline when he published his discovery of the dendritic cell, an odd-shaped player in the immune system. Since then, dendritic cells have proved to be critical sentinels on the lookout for foreign invaders, involved in early immune responses such as graft rejection, resistance to tumors and autoimmune diseases. Now it appears they need to be considered in research on arterial and heart function, too, according to new experiments to be published February 16 in The Journal of Experimental Medicine.

Previous research had turned up indirect evidence of dendritic cells in the large arteries of both mice and people. But Jaehoon Choi, a postdoctoral associate in Steinman’s Laboratory of Cellular Physiology and Immunology at The Rockefeller University, now has proof positive, at least in mice. More importantly, he and colleagues showed that the key immune cells sit just beneath the lining of the aorta and can project their dendrites into the bloodstream to capture foreign materials. “This has been seen in other linings like the airway and the intestine, but never in the major arteries,” Steinman says.

Choi used genetically modified mice developed by Rockefeller Professor Michel C. Nussenzweig’s lab that allowed him to tag a known marker for dendritic cells, a molecule called CD11c, with a fluorescent protein. High levels of CD11c are found in dendritic cells, and the fluorescing protein proved effective for identifying them in the heart. Choi’s experiments showed not only that the tagged dendritic cells had the requisite CD11c, but also turned up evidence of another immune system molecule involved in delivering foreign substances to the T cells that can kill them. Moreover, they isolated dendritic cells from the aorta and found that they were just as effective at handing over foreign substances and stimulating the immune system’s killer cells as those in immune organs such as the spleen.

Still, the question of whether the dendritic cells could do their normal job in the intact heart remained. To test this, Choi injected mice with a model foreign protein, waited 20 hours, and then isolated the dendritic cells. He found that the isolated cells spurred the growth of the appropriate T cells, indicating that they had captured the invaders like they were supposed to and delivered them over for destruction. “We were the first to show the function of the dendritic cell in the aorta and cardiac valves,” Choi says.

Now he is trying to figure out the role of dendritic cells in a mouse model of arteriosclerosis, a hardening of the arteries by plaques filled with lipids such as cholesterol. The recent research found ample evidence of dendritic cells in the aortic root, arch and descending aorta, the same areas that are prone to the disease.

“What does this really mean? Do they handle lipids or stimulate inflammatory response?” Steinman asks. “We don’t know, but that’s what we’d like to find out next.”

More information: The Journal of Experimental Medicine online: February 16, 2009

Provided by Rockefeller University

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Nanoscale ruler reveals organization of the cell membrane

Jun 25, 2014

After a ten-year effort, Prof. Dr. Michael Reth from the Institute of Biology III of the University of Freiburg and the Max Planck Institute of Immunobiology and Epigenetics has developed a method to investigate ...

Antibodies from the desert as guides to diseased cells

Jun 12, 2014

Nanoparticles are considered a promising approach in detecting and fighting tumour cells. The method has, however, often failed because the human immune system recognizes and rejects them before they can ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0