First genome-wide expression analysis yields better understanding of how leukemia develops

Feb 09, 2009

In a collaborative study published Feb. 9, 2009, in the Proceedings of the National Academy of Sciences (PNAS), scientists performed a genome-wide expression analysis comparing highly enriched normal blood stem cells and leukemic stem cells, and identified several new pathways that have a key role in cancer development.

Many scientists believe the best way to eradicate cancer is to find therapies that target cancer's stem cells, the cells thought to be responsible for maintaining the disease. Most cancer treatments today fail to attack cancer at its root, which is why the disease can recur despite aggressive therapy.

Before the development of cancer stem cell therapies can take place, however, scientists must improve our understanding of the similarities and differences between biological networks active in leukemic stem cells and their normal cell counterparts

The PNAS paper showed that by using modern microarray technology, scientists could reveal a swath of stem-cell pathways - some of which were already well known and others not previously implicated in leukemia and other cancers. In fact, researchers identified 3,005 differentially expressed genes. Among them, a ribosome and T-cell receptor signaling pathway emerged as new players in the regulation of cancer stem cells.

The direct comparison of leukemic stems cells (obtained by consent from patients) to normal blood stem cells, also provides critical insight into the differences found in malignancy that may be used to develop targeted therapy, said Michael W. Becker, M.D., an assistant professor at the James P. Wilmot Cancer Center at the University of Rochester Medical Center. Becker was a co-first author.

Source: University of Rochester Medical Center

Explore further: Study reveals a cause of poorer outcomes for African-American patients with breast cancer

Related Stories

Devices or divisive: Mobile technology in the classroom

9 hours ago

Little is known about how new mobile technologies affect students' development of non-cognitive skills such as empathy, self-control, problem solving, and teamwork. Two Boston College researchers say it's ...

Recommended for you

DNA blood test detects lung cancer mutations

Apr 17, 2015

Cancer DNA circulating in the bloodstream of lung cancer patients can provide doctors with vital mutation information that can help optimise treatment when tumour tissue is not available, an international group of researchers ...

Tumors prefer the easy way out

Apr 17, 2015

Tumor cells become lethal when they spread. Blocking this process can be a powerful way to stop cancer. Historically, scientists thought that tumor cells migrated by brute force, actively pushing through whatever ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.