First genome-wide expression analysis yields better understanding of how leukemia develops

Feb 09, 2009

In a collaborative study published Feb. 9, 2009, in the Proceedings of the National Academy of Sciences (PNAS), scientists performed a genome-wide expression analysis comparing highly enriched normal blood stem cells and leukemic stem cells, and identified several new pathways that have a key role in cancer development.

Many scientists believe the best way to eradicate cancer is to find therapies that target cancer's stem cells, the cells thought to be responsible for maintaining the disease. Most cancer treatments today fail to attack cancer at its root, which is why the disease can recur despite aggressive therapy.

Before the development of cancer stem cell therapies can take place, however, scientists must improve our understanding of the similarities and differences between biological networks active in leukemic stem cells and their normal cell counterparts

The PNAS paper showed that by using modern microarray technology, scientists could reveal a swath of stem-cell pathways - some of which were already well known and others not previously implicated in leukemia and other cancers. In fact, researchers identified 3,005 differentially expressed genes. Among them, a ribosome and T-cell receptor signaling pathway emerged as new players in the regulation of cancer stem cells.

The direct comparison of leukemic stems cells (obtained by consent from patients) to normal blood stem cells, also provides critical insight into the differences found in malignancy that may be used to develop targeted therapy, said Michael W. Becker, M.D., an assistant professor at the James P. Wilmot Cancer Center at the University of Rochester Medical Center. Becker was a co-first author.

Source: University of Rochester Medical Center

Explore further: AstraZeneca cancer drug, companion test approved

add to favorites email to friend print save as pdf

Related Stories

Baby cells learn to communicate using the lsd1 gene

Dec 15, 2014

We would not expect a baby to join a team or participate in social situations that require sophisticated communication. Yet, most developmental biologists have assumed that young cells, only recently born ...

Stem cells born out of indecision

Dec 18, 2014

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.