First genome-wide expression analysis yields better understanding of how leukemia develops

Feb 09, 2009

In a collaborative study published Feb. 9, 2009, in the Proceedings of the National Academy of Sciences (PNAS), scientists performed a genome-wide expression analysis comparing highly enriched normal blood stem cells and leukemic stem cells, and identified several new pathways that have a key role in cancer development.

Many scientists believe the best way to eradicate cancer is to find therapies that target cancer's stem cells, the cells thought to be responsible for maintaining the disease. Most cancer treatments today fail to attack cancer at its root, which is why the disease can recur despite aggressive therapy.

Before the development of cancer stem cell therapies can take place, however, scientists must improve our understanding of the similarities and differences between biological networks active in leukemic stem cells and their normal cell counterparts

The PNAS paper showed that by using modern microarray technology, scientists could reveal a swath of stem-cell pathways - some of which were already well known and others not previously implicated in leukemia and other cancers. In fact, researchers identified 3,005 differentially expressed genes. Among them, a ribosome and T-cell receptor signaling pathway emerged as new players in the regulation of cancer stem cells.

The direct comparison of leukemic stems cells (obtained by consent from patients) to normal blood stem cells, also provides critical insight into the differences found in malignancy that may be used to develop targeted therapy, said Michael W. Becker, M.D., an assistant professor at the James P. Wilmot Cancer Center at the University of Rochester Medical Center. Becker was a co-first author.

Source: University of Rochester Medical Center

Explore further: Prosocial internet support group not beneficial for breast cancer

add to favorites email to friend print save as pdf

Related Stories

Signaling molecule crucial to stem cell reprogramming

Nov 20, 2014

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

How adult fly testes keep from changing into ovaries

Nov 13, 2014

New research in flies shows how cells in adult reproductive organs maintain their sexual identity. The study, publishing online on November 13 in the Cell Press journal Developmental Cell, also identified a mutation that c ...

Recommended for you

Immune checkpoint inhibitors may work in brain cancers

Nov 21, 2014

New evidence that immune checkpoint inhibitors may work in glioblastoma and brain metastases was presented today by Dr Anna Sophie Berghoff at the ESMO Symposium on Immuno-Oncology 2014 in Geneva, Switzerland.

New model of follow up for breast cancer patients

Nov 21, 2014

Public health researchers from the University of Adelaide have evaluated international breast cancer guidelines, finding that there is potential to improve surveillance of breast cancer survivors from both a patient and health ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.