Imaging study illustrates how memories change in the brain over time

Jan 27, 2009

A new brain imaging study illustrates what happens to memories as time goes by. The study, in the January 28 issue of The Journal of Neuroscience, shows that distinct brain structures are involved in recalling recent and older events.

The findings support earlier studies of memory-impaired patients with damage limited to the hippocampus. These patients show deficits in learning new information and in recalling events that occurred just prior to their injuries. However, they are able to recall older events, which are thought to involve other regions of the brain, particularly the cortex.

"It has long been known that older memories are more resistant to hippocampal damage than newer memories, and this was thought to reflect the fact that the hippocampus becomes less involved in remembering as a memory gets older," said Russell Poldrack, PhD, an expert on the cognitive and neural mechanisms of memory at the University of California, Los Angeles, who was not involved in the study. "However, there has been a recent debate over whether the hippocampus ever really stops being involved, even for older memories," Poldrack said.

To address this debate, Christine Smith, PhD, and Larry Squire, PhD, at the University of California, San Diego and the San Diego VA Medical Center, imaged study participants as they answered 160 questions about news events that occurred over the past 30 years. The hippocampus and related brain structures were most active when recalling recent events. Hippocampal activity gradually declined as participants recalled events that were 1-12 years old and remained low when they recalled events that were 13-30 years old.

In contrast, Smith and Squire found the opposite pattern of activity in frontal, temporal, and parietal cortices. In these brain regions — which are located at the surface of the brain — activity increased with the age of the news event recalled. "Our findings support the idea that these cortical regions are the ultimate repositories for long-term memory," Smith said. The researchers found that brain activity was unrelated to the richness of memories or to the recollection of personal events related to the tested news events.

"This is the best evidence to date supporting a long-held view about how memories become permanent," said Howard Eichenbaum, PhD, an expert on memory at Boston University who was unaffiliated with the study.

The Journal of Neuroscience: www.jneurosci.org/

Source: Society for Neuroscience

Explore further: Recombinant peptide for transplantation of pancreatic islets in mice models of diabetes

add to favorites email to friend print save as pdf

Related Stories

Intermediary neuron acts as synaptic cloaking device

Feb 26, 2015

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Bumblebees make false memories too

Feb 26, 2015

It's well known that our human memory can fail us. People can be forgetful, and they can sometimes also "remember" things incorrectly, with devastating consequences in the classroom, courtroom, and other ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

Recommended for you

Novel nanoparticle therapy promotes wound healing

Mar 26, 2015

An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.