Researchers examine developing hearts in chickens to find solutions for human heart abnormalities (Video)

Jan 21, 2009

When it is head versus heart, the heart comes first. The heart is the first organ to develop and is critical in supplying blood to the rest of the body. Yet, little is known about the complex processes that regulate the heartbeat.

By studying chickens' hearts, a University of Missouri researcher has identified certain proteins within the heart muscle that play an important regulatory role in embryonic heartbeat control. Understanding these components and how they interact will give researchers a better understanding of heart development and abnormalities in humans.

In the study, researchers examined embryonic chickens' hearts, which develop morphologically and functionally similarly to humans' hearts, and tested the electrical activity present in the cardiac muscle cells over a period of 24 hours. They found that changes in local proteins have important effects on embryonic heart beat control.

This video is not supported by your browser at this time.
Researchers examined embryonic chickens' hearts and tested the electrical activity present in the cardiac muscle cells over a period of 24 hours. They found that changes in local proteins have important effects on embryonic heart beat control. Video courtesy of Dr. Luis Polo-Parada.

"Electrical activity in the heart appears in very early stages of development," said Luis Polo-Parada, assistant professor in the Department of Medical Pharmacology and Physiology in the MU School of Medicine and investigator in the Dalton Cardiovascular Research Center. "This study determined the role of the heart microenvironment in regulating electrical activity in cardiac cells that are required for normal cardiac function. Understanding exactly how a heart is made and how it begins to function will allow us to significantly improve therapies for a wide range of cardiac anomalies, injuries and diseases such as hypertension, cardiac fibrosis, cardiac hypertrophy and congestive heart failure."

Cardiac function depends on appropriate timing of contraction in various regions of the heart. Fundamental to the control of the heart are the electrical signals that arise within the heart cells that initiate contraction of the heart muscle. The upper chambers of the heart, the atria, must contract before the lower chambers, the ventricles, to obtain a coordinated contraction that will propel the blood throughout the body. While scientists understand the gross actions of the electrical signals that drive cardiac contraction, little is known about changes in the local environment of the embryonic and adult heart cells that influence these contractions.

The study "Cardiac Cushions Modulate Action Potential Phenotype During Heart Development," has been accepted for publication in Developmental Dynamics.

Source: University of Missouri-Columbia

Explore further: Healthy lifestyle may buffer against stress-related cell aging, study says

add to favorites email to friend print save as pdf

Related Stories

The geography of the global electronic waste burden

38 minutes ago

As local and national governments struggle to deal with ever-growing piles of electronic waste (or "e-waste"), scientists are now refining the picture of just how much there is and where it really ends up. Published in the ...

Oso disaster had its roots in earlier landslides

54 minutes ago

The disastrous March 22 landslide that killed 43 people in the rural Washington state community of Oso involved the "remobilization" of a 2006 landslide on the same hillside, a new federally sponsored geological study concludes.

The electric slide dance of DNA knots

54 minutes ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

A crystal wedding in the nanocosmos

1 hour ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

Recommended for you

Researchers explore what happens when heart cells fail

1 hour ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

3 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0