Rethinking the Genetic Theory of Inheritance

Jan 18, 2009

Scientists at the Centre for Addiction and Mental Health (CAMH) have detected evidence that DNA may not be the only carrier of heritable information; a secondary molecular mechanism called epigenetics may also account for some inherited traits and diseases. These findings challenge the fundamental principles of genetics and inheritance, and potentially provide a new insight into the primary causes of human diseases.

Your mother's eyes, your father's height, your predisposition to disease-- these are traits inherited from your parents. Traditionally, 'heritability' is estimated by comparing monozygotic (genetically identical) twins to dizygotic (genetically different) twins. A trait or disease is called heritable if monozygotic twins are more similar to each other than dizygotic twins. In molecular terms, heritability has traditionally been attributed to variations in the DNA sequence.

This video is not supported by your browser at this time.
Dr. Art Petronis, head of the Krembil Family Epigenetics Laboratory at the Center for Addiction and Mental Health, discusses new evidence that DNA may not be the only carrier of heritable information; a secondary molecular mechanism called epigenetics may also account for some inherited traits and diseases. These findings challenge the fundamental principles of genetics and inheritance, and potentially provide a new insight into the primary causes of human diseases. Video: Center for Addiction and Mental Health


CAMH's Dr. Art Petronis, head of the Krembil Family Epigenetics Laboratory, and his team conducted a comprehensive epigenetic analysis of 100 sets of monozygotic and dizygotic twins in the first study of its kind. Said Dr. Petronis, "We investigated molecules that attach to DNA and regulate various gene activities. These DNA modifications are called epigenetic factors."

The CAMH study showed that epigenetic factors - acting independently from DNA - were more similar in monozygotic twins than dizygotic twins. This finding suggests that there is a secondary molecular mechanism of heredity. The epigenetic heritability may help explain currently unclear issues in human disease, such as the presence of a disease in only one monozygotic twin, the different susceptibility of males (e.g. to autism) and females (e.g. to lupus), significant fluctuations in the course of a disease (e.g. bipolar disorder, inflammatory bowel disease, multiple sclerosis), among numerous others.

"Traditionally, it has been assumed that only the DNA sequence can account for the capability of normal traits and diseases to be inherited," says Dr. Petronis. "Over the last several decades, there has been an enormous effort to identify specific DNA sequence changes predisposing people to psychiatric, neurodegenerative, malignant, metabolic, and autoimmune diseases, but with only moderate success. Our findings represent a new way to look for the molecular cause of disease, and eventually may lead to improved diagnostics and treatment."

An advance online publication of this study will be available on the Nature Genetics website on January 18, 2009.

Source: Centre for Addiction and Mental Health

Explore further: Study identifies genetic change in autism-related gene

add to favorites email to friend print save as pdf

Related Stories

A challenge to the genetic interpretation of biology

Feb 19, 2014

A proposal for reformulating the foundations of biology, based on the 2nd law of thermodynamics and which is in sharp contrast to the prevailing genetic view, is published today in the Journal of the Royal ...

Chance determines cell death or normal sugar consumption

Jan 17, 2014

Some cells fail by chance, and not due to a genetic defect, to properly initiate the molecular processes for the breakdown of sugar. These cells are unable to grow and subsequently die. This discovery was done by a multidisciplinary ...

Recommended for you

Mutation disables innate immune system

4 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

21 hours ago

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

gopher65
3 / 5 (1) Jan 18, 2009
This is very interesting research.
Ashibayai
2 / 5 (1) Jan 19, 2009
I thought this pretty well understood already. Though, I do find this specific experiment to be very interesting.