What you give, might not always be received

Dec 11, 2008

A fundamental process in the transmission of genes from mother to child has been identified by researchers at the Montreal Neurological Institute, McGill University. The new study published in the December issue of the journal Nature Genetics identifies a mechanism that plays a key role in how mutations are transmitted from one generation to the next, providing unprecedented insight into metabolic diseases.

DNA that is only passed on from mothers to their children is stored in mitochondria, a compartment of cells which functions to supply energy to the body. Mutations in mitochondrial DNA (mtDNA) are important causes of over 40 known types of diseases and disorders which primarily affect brain and muscle function, some of which are severely debilitating, with symptoms including stroke, epilepsy, deafness and blindness. One very common mutation in Quebec causes maternally inherited blindness which has now been traced back to a Fille du Roi sent by the king of France in the 1600s to rectify the imbalance of gender in the newly colonized country.

MNI researchers have located a genetic bottleneck that determines the proportion of mutated mtDNA that mothers transmit to their offspring. This is important because there are many copies of mitochondria in cells and their distribution in tissues has a role in the severity and symptoms of the disease. Therefore knowing how mtDNA is transmitted is essential for the understanding and treatment of a range of maternally inherited diseases, and provides an opportunity for genetic counselling and treatment.

"The proportion of mutated DNA copies shifts rapidly and unpredictably from mother to child making it very hard to predict what proportion of mutated DNA will be passed on." says Dr. Eric Shoubridge, neuroscientist at the MNI and lead investigator in the study. "We now understand that this is partly due to the genetic bottleneck, in which just a small number of the original mtDNA copies from the mother are actually transmitted to the child. This bottleneck occurs during the development of eggs in affected females.

Only a small set of the female's mtDNA is selected to replicate resulting in the individual producing eggs with a wide range of proportions of mutated mtDNA. These eggs give rise to offspring with proportions of mutated mtDNA that differ from each other and are different from the proportion of mutated mtDNA in the mother. This explains why the occurrence and severity of a disease from mutated mtDNA can vary in offspring of an affected mother. The identification and location of the genetic bottleneck in our study strengthens our knowledge of the rules and processes of transmission and improves our capacity for genetic counselling."

An important application of this study is in the prevention of the disease at the prenatal stage because therapies for sick patients are usually ineffective, and the diseases are often fatal. The study locates the bottleneck as occurring during the process of egg maturation in early postnatal life of a female, supporting the knowledge that mature oocytes or egg cells contain the full set of copies of mtDNA. This evidence makes possible pre-implantation genetic diagnosis, in which an oocyte is screened for harmful mutations prior to fertilization, for in-vitro fertilization for example. This prevents the transmission of harmful mutations and can avoid the termination of a pregnancy in cases where an embryo is carrying a fatal neurological disorder.

Source: Montreal Neurological Institute and Hospital

Explore further: Innovative 'genotype first' approach uncovers protective factor for heart disease

add to favorites email to friend print save as pdf

Related Stories

End dawns for Europe's space cargo delivery role

52 minutes ago

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Physicists discuss quantum pigeonhole principle

22 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Recommended for you

Study clarifies parents as source of new disease mutations

15 hours ago

Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

How black truffles deal with the jumpers in their genome

Jul 31, 2014

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments : 0