New research targets West Nile virus and dengue fever

Dec 11, 2008

Research conducted at The University of Queensland could contribute to the development of a vaccine and cure for West Nile virus and Dengue fever.

Led by Associate Professor Alexander Khromykh, a team of researchers from UQ's School of Molecular and Microbial Sciences identified a novel characteristic of the virus family to which these diseases belong.

The team found all flaviviruses produced a small molecule which, among other functions, controlled the host's response to viral infection.

This molecule, called a subgenomic noncoding ribonucleic acid (sfRNA), is a part of the virus genome.

"To develop new and effective antiviral strategies, we have to know as much as possible about the virus, or virus family, that we are fighting," Dr Khromykh said.

"As sfRNA is produced by all flaviviruses we tested so far, targeting it with an antiviral therapy may be effective for the whole range of flaviviruses.

"By using reverse genetic engineering we were able to generate viruses that do not produce this sfRNA and showed that these engineered viruses are no longer able to kill their hosts or elicit disease symptoms.

"These engineered viruses offer great potential as vaccine candidates as they are expected to elicit an antiviral immune response similar to the normal virus infection without causing a disease."

Dr Khromykh said by studying mice infected with these engineered West Nile viruses, the team learned more about how the body attempted to combat a flavivirus infection.

The part of the virus the infected cells in the body are unsuccessful in destroying forms the sfRNA, which helps the virus to kill cells and cause potentially deadly diseases, he said.

"We identified sfRNA as a potential antiviral target for the large group of medically important viruses," Dr Khromykh said.

"Moreover, the knowledge obtained from our studies with West Nile virus should be readily applicable for designing anti-viral drugs and engineering similar vaccine candidates for other medically important flaviviruses."

Source: Research Australia

Explore further: Newly discovered hormone mimics the effects of exercise

add to favorites email to friend print save as pdf

Related Stories

Google hits back at rivals with futuristic HQ plan

17 hours ago

Google unveiled plans Friday for a new campus headquarters integrating wildlife and sweeping waterways, aiming to make a big statement in Silicon Valley—which is already seeing ambitious projects from Apple ...

Recommended for you

Newly discovered hormone mimics the effects of exercise

1 hour ago

Scientists at the USC Leonard Davis School of Gerontology have discovered a new hormone that fights the weight gain caused by a high-fat Western diet and normalizes the metabolism - effects commonly associated ...

Highly sensitive detection of malaria parasites

4 hours ago

New assays can detect malaria parasites in human blood at very low levels and might be helpful in the campaign to eradicate malaria, reports a study published this week in PLOS Medicine. An international team l ...

How fat breakdown contributes to insulin resistance

10 hours ago

New research from the University of Virginia School of Medicine has shed light on how chronic stress and obesity may contribute to type 2 diabetes. The findings point the finger at an unexpected biological perpetrator – ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.