Scientists show function of helical band in heart

Dec 01, 2008

Scientists from the California Institute of Technology (Caltech) have created images of the heart's muscular layer that show, for the first time, the connection between the configuration of those muscles and the way the human heart contracts.

More precisely, they showed that the muscular band--which wraps around the inner chambers of the heart in a helix--is actually a sort of twisting highway along which each contraction of the heart travels.

Their findings were published in the December issue of the American Physiological Society journal, Heart and Circulatory Physiology.

Since the days of Leonardo da Vinci, observers of the human body have known that the heart's beat is not a simple in-and-out movement--that it has more than a little bit of a twist to it. "The heart twists to push blood out the same way you twist a wet towel to wring water out of it," explains Morteza Gharib, the principal investigator on the study, and the Hans W. Liepmann Professor of Aeronautics and professor of bioengineering in the Division of Engineering and Applied Science at Caltech.

Some 50 years ago, anatomist Francisco Torrent-Guasp was the first to show the helical configuration of the heart's myocardium--its muscular middle layer, the one that contracts with each heart beat.

But what he and subsequent generations of scientists were unable to do was to connect that myocardial band to the heart's function--to prove that the helical shape is important to the effective beating of the heart. Without that connection, physicians and scientists have tended to look at the heart as "just a piece of meat," says Gharib.

Until now, that is. Using a technique pioneered by Han Wen and his team at the National Institutes of Health, Gharib and his colleague Abbas Nasiraei Moghaddam, a Caltech graduate and visitor in bioengineering, were able to create some of the first dynamic images of normal myocardium in action at the tissue level. "We tagged and traced small tissue elements in the heart, and looked at them in space, so we could see how they moved when the heart contracts," Gharib explains. "In this way, we were able to see where the maximum physical contraction occurs in the heart and when--and to show that it follows this intriguing helical loop."

With each beat of the heart, a wave of contraction starts at the heart's apex--which, despite its name, is actually at the very bottom of the heart--and then travels up through the myocardium. "The only time the whole helix shows up in the images is at the end of systole, which is when the heart is contracting," says Gharib. "This simple band structure is akin to an engine behind the heart pumping action."

In addition to going a long way toward settling the decades-long structure/function debate surrounding Torrent-Guasp's work, this finding also has major implications for the surgical treatment of heart disease, Gharib says. "It's going to change the way we repair the heart," he explains. Knowing that the contractile wave travels along the helical pathway--instead of occurring throughout the heart all at once--has implications for which parts of the heart will be most vulnerable to a surgeon's scalpel, for instance. "Seventy-five percent of the function of the heart depends on this muscle," Gharib says. "Surgeons now know what to cut and what not to cut. This will help them to come up with new and more effective surgical procedures."

Source: California Institute of Technology

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Sepp
not rated yet Dec 02, 2008
Good research. The helix or vortex is being shown to have great importance in an ever increasing number of natural processes.

Regarding the heart, the next discovery should be the low importance of the "pump" concept relative to the idea that the heart's main function is not to supply pressure but rhythmic timing to the flow of blood. That would shift the emphasis from pressure to the stabilization of blood circulation which could also function without a pump.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.