Exercise increases brain growth factor and receptors, prevents stem cell drop in middle age

Nov 18, 2008

A new study confirms that exercise can reverse the age-related decline in the production of neural stem cells in the hippocampus of the mouse brain, and suggests that this happens because exercise restores a brain chemical which promotes the production and maturation of new stem cells.

Neural stem cells and progenitor cells differentiate into a variety of mature nerve cells which have different functions, a process called neurogenesis. There is evidence that when fewer new stem or progenitor cells are produced in the hippocampus, it can result in impairment of the learning and memory functions. The hippocampus plays an important role in memory and learning.

The study, "Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice," was carried out by Chih-Wei Wu, Ya-Ting Chang, Lung Yu, Hsiun-ing Chen, Chauying J. Jen, Shih-Ying Wu, Chen-Peng Lo, Yu-Min Kuo, all of the National Cheng Kung University Medical College in Taiwan. The study appears in the November issue of the Journal of Applied Physiology, published by The American Physiological Society.

Rise in corticosterone or fall in nerve growth factor?

The researchers built on earlier studies that found that the production of stem cells in the area of the hippocampus known as the dentate gyrus drops off dramatically by the time mice are middle age and that exercise can slow that trend. In the current study, the researchers wanted to track these changes in mice over time, and find out why they happen.

One hypothesis the researchers investigated is that the age-related decline in neurogenesis is tied to a rise in corticosterone in middle age. Elevation of corticosterone has been associated with a drop in the production of new stem cells in the hippocampus.

The second hypothesis is that nerve growth factors -- which encourage new neural cell growth but which decrease with age -- account for the drop in neurogenesis. Specifically, the study looked at whether a decrease in brain-derived neurotrophic growth factor leads to a decline in new neural stem cells.

Variables studied

The researchers trained young (3 months), adult (7 months), early middle-aged (9 months), middle-aged (13 months) and old (24 months) mice to run a treadmill for up to one hour a day.

The study tracked neurogenesis, age, exercise, serum corticosterone levels and brain-derived neurotrophic factor (BDNF) and its receptor TrkB levels in the hippocampus. The researchers focused on middle age as a critical stage for the decline of neurogenesis in the mice.

As expected, the study found that neurogenesis drops off sharply in middle-aged mice. For example, the number of neural progenitor and mitotic (dividing) cells in the hippocampus of middle-aged mice was only 5% of that observed in the young mice.

The researchers also found that exercise significantly slows down the loss of new nerve cells in the middle-aged mice. They found that production of neural stem cells improved by approximately 200% compared to the middle-aged mice that did not exercise. In addition, the survival of new nerve cells increased by 170% and growth by 190% compared to the sedentary middle-aged mice. Exercise also significantly enhanced stem cell production and maturation in the young mice. In fact, exercise produced a stronger effect in younger mice compared to the older mice.

How does this happen?

Based on these results, it appears that nerve growth factor has more to do with these findings than the corticosterone:

-- The middle-aged exercisers had more brain-derived neurotrophic factor and its receptor, TrkB, compared to the middle-aged mice that did not exercise. This suggests that exercise promotes the production of brain-derived neurotrophic factor which, in turn, promotes differentiation and survival of new brain cells in the hippocampus.

-- Exercise did not change the basal level of serum corticosterone in middle-aged mice. This suggests that the reduction of neurogenesis during aging is not due to the drop in corticosterone levels.

Source: American Physiological Society

Explore further: Medical marijuana support high ahead of Florida vote

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

1 hour ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

2 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

2 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Medicare hospital fund to last 4 years longer

35 minutes ago

(AP)—The government says Medicare's finances have improved. The program's hospital trust fund won't be exhausted until 2030—four years later than last year's estimate.

Green spaces found to increase birth weight

1 hour ago

Mothers who live near green spaces deliver babies with significantly higher birth weights, according to a new study, "Green Spaces and Adverse Pregnancy Outcomes" published in the journal, Occupational and Environmental Me ...

Gender inequalities in health: A matter of policies

4 hours ago

A new study of the European project SOPHIE has evaluated the relationship between the type of family policies and gender inequalities in health in Europe. The results show that countries with traditional family policies (central ...

User comments : 0