'Dry cleaning effect' explained by forgetful Yale researcher

Oct 20, 2008

Yale researchers have described how dueling brain systems may explain why you forget to drop off the dry cleaning and may point to ways that substance abusers and people with obsessive compulsive disorder can overcome bad habits.

In Proceedings of the National Academy of Sciences, Christopher J. Pittenger, M.D., and colleagues describe a sort of competition between areas of the brain involved in learning that results in what Pittenger calls the "dry cleaning effect."

One area of the brain called the striatum helps record cues or landmarks that lead to a familiar destination. It is the area of the commuter's brain that goes on autopilot and allows people to get to work, often with little memory of the trip.

But when driving to an unfamiliar place, the brain recruits a second area called the hippocampus, which is involved in a more flexible system called spatial learning. The commuter must employ this system if he or she wants to run an errand before work.

"When you have driven the same route many times and are doing it on autopilot, it can be really difficult to change," said Pittenger, assistant professor of psychiatry at Yale and senior author the paper. "This is why I cannot, for the life of me, remember to drop off my dry cleaning on the way to work. If I'm not paying enough attention right at that moment, if I am thinking about something else, I just sail right on by."

Pittenger and Yale colleagues Anni S. Lee and Ronald S. Duman developed a way to study how these two modes of learning might be interconnected in mice.

In one group, they disrupted areas of the striatum in mice and discovered that their ability to complete landmark navigation tasks was impaired. However, these mice actually improved on tasks that involved spatial learning.

Conversely, when the researchers disrupted an area of the hippocampus involved in spatial learning, the animals could no longer navigate spatially but learned landmark tasks more quickly.

Pittenger speculates that the interactions between these two systems may be important for understanding certain mental illnesses in which patients have destructive, habit-like patterns of behavior or thought. Obsessive-compulsive disorder, Tourette syndrome, and drug addiction involve abnormal function of the striatum and may also involve disruption of the interactions between the two learning systems, which may make habits stronger and less flexible.

"This is part of what we are doing in cognitive-behavioral therapy when we teach patients to recognize their destructive habits, to take a step back, and to learn to do things differently," Pittenger said. "What we're really asking them to do is to use one of these systems to overcome and, ultimately, to re-train the other."

In time, Pittenger hopes his studies will lead to more effective treatments for psychiatric disease – and, maybe, help him drop off his dry cleaning.

Source: Yale University

Explore further: Better living through mitochondrial derived vesicles

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Student seeks to improve pneumonia vaccines

2 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

4 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

Aug 19, 2014

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jeffsaunders
5 / 5 (1) Oct 20, 2008
yes - anything that can help me to do remember to do the one-off tasks at the same time as the mundane has got to be good.