Clue to genetic cause of fatal birth defect

Oct 09, 2008

A novel enzyme may play a major role in anencephaly, offering hope for a genetic test or even therapy for the rare fatal birth defect in which the brain fails to develop, according to a study from researchers at the University of Illinois at Chicago College of Medicine.

The study appears in the October issue of the journal of Molecular Endocrinology.

In the U.S., 1,000 to 2,000 children are born with anencephaly each year. Most do not survive more than a day or two. Although anencephaly can sometimes be diagnosed through ultrasound, which picks up the malformation of the head, there is no genetic test, and its cause is unknown.

By breeding special "knockout" mice that were missing the gene for the enzyme called HSD17b7, UIC researchers found that such mice died on the tenth day of gestation with the severe lack of brain development that characterizes the human birth defect.

The failure of the mice to develop, as well as the extreme nature of the changes in the formation of the animals, was very surprising, said Geula Gibori, UIC distinguished professor of physiology and biophysics and principal investigator of the study. Mice that lack enzymes of similar function are born with subtle changes in their cognitive ability, but they survive.

The UIC researchers had previously discovered this novel enzyme and were focused on its role in converting the weak hormone estrogen into the more potent estradiol in the ovaries and its possible role in breast cancer.

Recent research has shown that the HSD17b7 enzyme has an additional role in the last steps of cholesterol biosynthesis. But because the fetus receives cholesterol from the mother during gestation, Gibori and her colleagues did not expect the enzyme to be of much importance to development, she said.

However, it appears that as the fetal mouse brain develops it forms a blood barrier, blocking maternal cholesterol from brain cells. The brain becomes dependent on the biosynthesis of its own cholesterol once this blood-brain barrier forms, at day 10 of gestation.

The UIC researchers established that in the fetus, the brain is the most important site for HSD17b7 expression and provided evidence that anencephaly may result from the loss of this enzyme.

"Creating a knockout mouse is a very laborious process," said Aurora Shehu, first author of the paper and at that time a graduate student in Gibori's laboratory. Mice with only one copy of the gene are produced and then interbred; one in four of their offspring should have no copy of the gene -- a "null" mouse.

"We expected null mice to be born and to be infertile, however, no null mice were born," said Shehu. "I was afraid I had made a mistake, and went back to the beginning, repeating the entire process, but still no null mice were born."

Shehu then began more painstaking work, performing in-utero genetic testing on entire litters -- often 10 to 12 fetuses per litter. She found that the null mice were there, but they were dying at day 10 of gestation, when the blood-brain barrier develops.

Gibori says the gene that is missing or defective in human anencephaly is not yet known, but the discovery that the deletion of HSD17b7 in the mouse causes anencephaly suggests this gene may be awry in the human disease.

"This opens up very exciting possibilities for understanding human anencephaly, and, perhaps, someday being able to provide a genetic test for the condition early in pregnancy -- and ultimately a therapy," she said.

As their next step, Gibori's lab plans to test human anencephalic tissue for a mutation in the HSD17b7 gene.

Source: University of Illinois at Chicago

Explore further: Computational biologists simplify diagnosis for hereditary diseases

add to favorites email to friend print save as pdf

Related Stories

Microsoft unveils Xbox in China as it faces probe

10 hours ago

Microsoft on Wednesday unveiled its Xbox game console in China, the first to enter the market after an official ban 14 years ago, even as it faces a Chinese government probe over business practices.

Classic Lewis Carroll character inspires new ecological model

10 hours ago

Inspired by the Red Queen in Lewis Carroll's Through the Looking Glass, collaborators from the University of Illinois and National University of Singapore improved a 35-year-old ecology model to better understand how species ...

Recommended for you

Study clarifies parents as source of new disease mutations

5 hours ago

Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

How black truffles deal with the jumpers in their genome

15 hours ago

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments : 0